
Agilent 35670A Dynamic Signal Analyzer

Using Instrument Basic
with the Agilent 35670A

Agilent Part Number 35670-90049

Printed in U.S.A.

Print Date: November 2000

 Copyright

NOTICE

WARRANTY

A copy of the specific warranty terms applicable to your Agilent Technologies product and replacement

parts can be obtained from your local Sales and Service Office.

RESTRICTED RIGHTS LEGEND

Saftey Summary
The following general safety precautions must be observed during all phases of
operation of this instrument. Failure to comply with these precautions or with
specific warnings elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Agilent Technologies, Inc.
assumes no liability for the customer’s failure to comply with these
requirements.

GENERAL

This product is a Safety Class 1 instrument (provided with a protective earth
terminal). The protective features of this product may be impaired if it is used in
a manner not specified in the operation instructions.

All Light Emitting Diodes (LEDs) used in this product are Class 1 LEDs as per
IEC 60825-1.

ENVIRONMENTAL CONDITIONS

This instrument is intended for indoor use in an installation category II, pollution
degree 2 environment. It is designed to operate at a maximum relative humidity
of 95% and at altitudes of up to 2000 meters. Refer to the specifications tables
for the ac mains voltage requirements and ambient operating temperature range.

BEFORE APPLYING POWER

Verify that the product is set to match the available line voltage, the correct fuse
is installed, and all safety precautions are taken. Note the instrument’s external
markings described under Safety Symbols.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cover must be connected
to an electrical protective earth ground. The instrument must be connected to
the ac power mains through a grounded power cable, with the ground wire
firmly connected to an electrical ground (safety ground) at the power outlet.
Any interruption of the protective (grounding) conductor or disconnection of
the protective earth terminal will cause a potential shock hazard that could
result in personal injury.

i

FUSES

Only fuses with the required rated current, voltage, and specified type (normal
blow, time delay, etc.) should be used. Do not use repaired fuses or
short-circuited fuse holders. To do so could cause a shock or fire hazard.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes.

DO NOT REMOVE THE INSTRUMENT COVER

Operating personnel must not remove instrument covers. Component
replacement and internal adjustments must be made only by qualified service
personnel.

Instruments that appear damaged or defective should be made inoperative and
secured against unintended operation until they can be repaired by qualified
service personnel.

WARNING The WARNING sign denotes a hazard. It calls attention to a procedure,

practice, or the like, which, if not correctly performed or adhered to,

could result in personal injury. Do not proceed beyond a WARNING

sign until the indicated conditions are fully understood and met.

Caution The CAUTION sign denotes a hazard. It calls attention to an operating
procedure, or the like, which, if not correctly performed or adhered to, could
result in damage to or destruction of part or all of the product. Do not proceed
beyond a CAUTION sign until the indicated conditions are fully understood and
met.

ii

Safety Symbols

Warning, risk of electric shock

Caution, refer to accompanying documents
Alternating current

Both direct and alternating current

Earth (ground) terminal

Protective earth (ground) terminal

Frame or chassis terminal

Terminal is at earth potential.

Standby (supply). Units with this symbol are not completely disconnected from ac mains when
this switch is off

iii

Table of Contents

Chapter 1: Introduction

Welcome to Instrument Basic . 1-1

Instrument BASIC Applications. 1-2

Using Instrument BASIC . 1-2

How to Use This Manual . 1-3

Typographical Conventions . 1-4

Other Sources of Information . 1-4

Need Assistance? . 1-5

Chapter 2: Recording Programs

Keystroke Recording . 2-1

What is Keystroke Recording? . 2-1

Instrument BASIC Programs and the GPIB Buffer . 2-2

What’s in a Recorded Program . 2-3

The OUTPUT Statement . 2-3

The ASSIGN Statement . 2-4

GPIB Commands . 2-4

How Recording Works . 2-5

Operations That Are Not Recorded . 2-6

Front Panel Operations Without GPIB Commands . 2-6

Instrument BASIC Operations . 2-7

Operations Requiring Additional Programming . 2-8

Operations Not Available From The Front Panel . 2-8

Avoiding Recording Errors . 2-9

Use Preset . 2-9

Selecting Specific Parameters. 2-9

Use GPIB Echo . 2-10

Program Buffers and the Active Program . 2-11

Selecting the Active Program . 2-11

Changing a Program Label . 2-12

Chapter 3: Controlling Programs

Running and Continuing a Program . 3-2

Pausing a Program . 3-4

Stopping a Program . 3-5

Chapter 4: Saving and Recalling Programs

Transferring Programs . 4-1

Disk Formats and File Systems . 4-2

File Types . 4-2

DOS Conventions . 4-3

Using a DOS Disk to Transfer Data With a PC. 4-3

LIF Conventions . 4-4

Using a LIF Disk to Transfer Data with an BASIC computer . 4-4

Program Buffers . 4-5

Memory. 4-5

Front Panel Operation versus Keyword Statements . 4-6

The [Save / Recall] Menu . 4-6

The Keyword Statements (SAVE, RE-SAVE and GET) . 4-6

Saving a Program to Disk . 4-7

Recalling a Program from Disk . 4-8

Appending Program Files from Disk . 4-9

Autoloading a Program . 4-11

Chapter 5: Developing Programs

Overview . 5-1

Using the Instrument Basic editor . 5-3

Using the Instrument Basic Editor With a Keyboard . 5-4

Using the [EDIT] Softkeys . 5-8

Getting Around in the Program . 5-9

Entering Program Lines . 5-10

Renumbering, Copying and Moving Lines . 5-10

Inserting Spaces . 5-10

Inserting Lines. 5-11

Recalling Deleted Lines . 5-11

Using the Front-Panel Alpha Keys . 5-12

Recording into an Existing Program . 5-15

Removing Program Text . 5-15

Using [UTILITIES] . 5-17

MEMORY SIZE . 5-18

AUTOMEMORY . 5-18

SCRATCH . 5-19

RENUMBER . 5-20

SECURE . 5-21

INDENT . 5-22

DELSUB and DELSUB TO END . 5-22

Using [PRINT PROGRAM] . 5-23

Using [DISPLAY SETUP] . 5-24

Table of Contents (Continued)

Chapter 6: Debugging Programs

Overview . 6-2

Using [EXAMINE VARIABLE] . 6-4

Examining Strings. 6-4

Examining Arrays . 6-4

Setting Breakpoints. 6-5

Using [SINGLE STEP] . 6-6

Using [RUN PROGRAM], [CONTINUE], and [LAST ERROR] . 6-7

Using [RESET] . 6-7

Chapter 7: Graphics and Display Techniques

Using the Partitions . 7-1

Allocating Partitions . 7-1

De-Allocating Partitions . 7-2

Using Text . 7-3

Using Graphics . 7-5

Graphics and Display Partitions. 7-5

Graphics Line Buffering . 7-5

Graphics Pens . 7-5

Example Program . 7-6

Chapter 8: Interfacing with the GPIB

Introduction. 8-1

Communicating with GPIB Devices . 8-2

GPIB Device Selectors . 8-2

Moving Data Through the GPIB . 8-3

General Structure of the GPIB . 8-3

Examples of Bus Sequences . 8-5

General Bus Management . 8-6

REMOTE . 8-7

LOCAL LOCKOUT . 8-8

LOCAL . 8-9

TRIGGER . 8-10

CLEAR . 8-10

ABORT . 8-11

GPIB Service Requests . 8-11

Passing and Regaining Control . 8-14

The Instrument BASIC GPIB Model . 8-15

External and Internal Busses . 8-15

Service Request Indicators . 8-16

Status Registers . 8-17

Instrument BASIC as the Active Controller . 8-18

Passing Active Control to the Instrument . 8-19

Instrument BASIC as a Non-Active Controller . 8-21

Interfacing with an External Controller . 8-22

Transferring Data Between Programs . 8-23

Downloading and Uploading Programs . 8-27

Table of Contents (Continued)

Chapter 9: Interfacing with the RS-232-C Serial Port

Introduction. 9-1

RS-232-C Serial Interface . 9-2

Asynchronous Data Communication . 9-3

Hardware Requirements. 9-4

Configuring the RS-232-C Port . 9-5

Speed (Baud Rate) . 9-5

Character Length . 9-5

Number of Stop Bits . 9-5

Parity . 9-6

Handshaking . 9-6

Transferring Data. 9-7

Entering and Outputting Data . 9-7

Outbound Data Messages . 9-7

Inbound Data Messages . 9-8

Error Detection . 9-9

The Device State Register. 9-10

Event-Initiated Branching . 9-11

Chapter 10: Interfacing with the Parallel Port

Introduction. 10-1

The Parallel Interface. 10-2

Hardware Requirements . 10-3

Transferring Data. 10-4

Chapter 11: Example Programs

ARBSOURC . 11-2

MANARM . 11-7

OPC_SYNC . 11-9

OPCQSYNC . 11-10

RPNCALC . 11-11

TWO_CTLR . 11-20

WAI_SYNC . 11-22

Chapter 12: Instrument-Specific Instrument Basic Features

Introduction. 12-1

Supported Interfaces . 12-2

Display and Keyboard Interfaces. 12-3

Disk I/O. 12-6

Miscellaneous Command Differences . 12-12

Keyword Exceptions . 12-13

Table of Contents (Continued)

1

Introduction

1

Introduction

Welcome to Instrument Basic

This manual will help you learn about using your Instrument BASIC software on the Agilent 35670A. It

shows you how to use the programming, editing and debugging features of Instrument BASIC. It also

describes how to save and recall programs and how the Agilent 35670A implements Instrument BASIC

features.

An additional aid is online help, which provides key-specific information on Instrument Basic features.

This help is accessed in the same manner as it is for other features of the Agilent 35670A. Press the

[Help] hardkey followed by the desired hardkey or softkey—or use the index.

1-1

Instrument BASIC Applications

Instrument BASIC can be used for a wide range of applications, from simple recording and playback of

measurement sequences, to remote control of other instruments.

Instrument BASIC is a complete system controller residing inside your analyzer. It communicates with

your analyzer via GPIB commands and can also communicate with other instruments, computers and

peripherals over the GPIB interface.

Using Instrument BASIC

You need not be proficient in a programming language to successfully use Instrument BASIC. With

keystroke recording, Instrument BASIC automatically builds an executable program by capturing

measurement sequences as they are performed. With little or no editing of this generated code, you can

put your program to work immediately controlling and automating your Agilent 35670A.

Instrument BASIC’s programming interface includes an editor, a debugging program, and a set of

programming utilities. The utilities allow you to set memory size as well as renumber, secure, indent, or

delete your program. The remaining softkeys allow you to run or continue a program, print a listing or

configure the display.

You can have up to five programs in memory at one time. Each has its own softkey that runs the program

and appears in the [BASIC] menu. You can customize the program softkey label. You can obtain a

program listing by pressing a softkey in one of the Instrument Basic menus.

The Instrument BASIC command set is similar to the command set of Agilent 9000 Series 300 BASIC.

Instrument BASIC programs can run on any BASIC workstation with few, if any, changes. Refer to

chapter 8, “Interfacing with the GPIB,” for information on interfacing the Agilent 9000 Series 300

BASIC and Instrument BASIC environments. Porting information is located in the “ Instrument BASIC

Language Reference” section of the Instrument Basic Users Handbook.

Introduction
Instrument BASIC Applications

1-2

How to Use This Manual

Read chapters 1 through 4 to learn how to record, run, save and recall programs with a minimum of

editing and programming. This information is generally adequate for those who only need Instrument

BASIC to record their measurement tasks.

Read chapter 5, “Developing Programs,” and chapter 6, “Debugging Programs” to learn how to edit

programs with the front panel or with a keyboard.

Read chapter 7, “Display and Graphics Techniques,” to understand how Instrument BASIC’s graphics

features apply to the Agilent 35670A.

Read chapter 8, “Interfacing with the GPIB,” to understand how the Instrument BASIC controller

interfaces with external devices (such as plotters) and external controllers (such as Agilent 9000

Series 300 controllers).

Read chapters 9 and 10, to understand how the Instrument Basic controller interfaces with devices

connected to the analyzer’s serial and parallel ports.

Refer to chapter 11 for example programs written in Instrument BASIC to run on the Agilent 35670A.

Chapter 12 couples this manual with the Instrument BASIC Users Handbook. The handbook, which

serves users of Instrument BASIC on all instrument platforms, contains three sections:

“Instrument Basic Programming Techniques”

“ Instrument BASIC Interfacing Techniques”

“ Instrument BASIC Language Reference”

Chapter 12 clarifies which parts of the handbook do not apply to the Agilent 35670A.

Introduction
How to Use This Manual

1-3

Typographical Conventions

The following conventions are used in this manual when referring to various parts of the Instrument

BASIC and Agilent 35670A operating environments:

[Hardkey] Brackets [] surrounding a bold-faced name indicate the name of a hardkey on the front panel of the
Agilent 35670A.

[SOFTKEY] Brackets [] surrounding a name indicate the name of a softkey.

[SOFTKEY ON OFF] Bolded selection in a softkey indicates the state after the softkey is pressed.

[Hardkey]

[SOFTKEY]

[SOFTKEY] A series of hardkeys and softkeys represents the path to a given softkey or menu.

[Key] Brackets [] surrounding an italic typeface indicate the name of a key on the keyboard which can
be used to edit Instrument Basic programs.

Italic Italic typeface is used when referring to the name of a different manual. It is also used to emphasize
a particular word or phrase.

<element> Angle brackets are used to signify a syntax element in a statement.

Other Sources of Information

Agilent 35670A Operator’s Guide

Agilent 35670A Online Help

Instrument Basic Users Handbook:

– Instrument Basic Programming Techniques

– Instrument Basic Interfacing Techniques

– Instrument Basic Language Reference

Introduction
Typographical Conventions

1-4

Need Assistance?

If you need assistance, contact your nearest Agilent Technologies Sales and Service Office listed in the

Agilent Catalog, or contact your nearest regional office listed at the back of this guide. If you are

contacting Agilent Technologies about a problem with your Agilent 35670A Dynamic Signal Analyzer,

please provide the following information:

Model number: Agilent 35670A

Serial number and firmware version:

(To locate the analyzer’s serial number and firmware version, press [System Utility] [S/N VERSION].)

Options:

Date the problem was first encountered:

Circumstances in which the problem was encountered:

Can you reproduce the problem?

What effect does this problem have on you?

Introduction
Need Assistance?

1-5

2

Recording Programs

2

Recording Programs

Keystroke Recording

Of all the available methods of creating Instrument BASIC programs, the easiest is keystroke recording.

It requires only a couple of steps to set up and run a program. It can be accomplished with very little

knowledge of programming.

You can record your program into any one of the five available locations in memory. Only one of these

memory locations is active at any one time. You can select any one of the five memory locations as the

currently active program.

What is Keystroke Recording?

Keystroke recording is a way to automatically create Instrument BASIC measurement sequence

programs.

To enabling recording, press:

[BASIC]
[INSTRUMNT BASIC]
[ENABLE RECORDING]

Press the normal key sequences of a measurement on the analyzer. To stop recording, press the [BASIC]
hardkey. To run the program, press the appropriate [RUN PROGRAM] softkey in the [BASIC] menu.

Instrument BASIC programs communicate with the analyzer over an internal bus. Instrument Basic uses

the same set of commands that external controllers use for remote operation of the instrument. Keystroke

recording works by finding the bus command, called an GPIB command, that fits each operation you

perform from the front panel. It builds a program line that duplicates that operation when executed.

All program lines built by keystroke recording are entered into the analyzer’s program memory. If the

memory location does not contain any code, a complete executable program is inserted. If program

statements exist in the memory location when recording is turned on, the recorded statements are inserted

into the existing code. Chapter 5, “Developing Programs,” describes how to record into existing

programs.

2-1

Instrument BASIC Programs and the GPIB Buffer

Recorded programs work by sending GPIB commands to the analyzer. The analyzer queues the GPIB

commands into its input buffer. An Instrument BASIC program generally outputs the commands much

faster than the analyzer can execute them. The program often completes before the analyzer finishes

executing the commands in the input buffer. The analyzer continues to process these commands until the

buffer is empty.

This can be a problem if you are not aware of the possible delay. For example, it may not be obvious that

the program has completed, since the analyzer is still functioning. This could cause confusion if you try

to pause and continue a program that has actually finished.

You can clear the analyzer’s input buffer by inserting the statement “CLEAR 8” at the beginning of your

program. Refer to chapter 5 for more information on developing and editing programs.

Recording Programs

2-2

What’s in a Recorded Program

Any program created with keystroke recording is composed of three fundamental Instrument BASIC

statements:

ASSIGN

OUTPUT

END

The following simple program demonstrates these statements:

1 ASSIGN @Agilent35670a TO 800
2 OUTPUT @Agilent35670a;"FREQ:SPAN:FULL"
10 END

There is only one ASSIGN statement at the beginning of a program and only one END statement at the

end, but in a typical program there are many OUTPUT statements. The OUTPUT statement does the

actual work of controlling the Agilent 35670A.

The OUTPUT Statement

The Instrument BASIC statement

OUTPUT <destination>; <data>

essentially tells the internal computer to send some information (data) to a device at a specific address

(destination). The destination can be a device selector (a number), or a name representing a number,

called a path name. The data can take several forms but in recorded Instrument BASIC programs it is a

string containing instructions to the analyzer.

The following command represents a typical OUTPUT statement generated from a recording session:

OUTPUT @Agilent35670a;"FREQ:SPAN:FULL"

The OUTPUT command is followed by a name representing the device selector (@Agilent35670a),

followed by a semicolon, followed by the data. The data is in quotes (“FREQ:SPAN:FULL”) and

contains an instruction to the analyzer.

Recording Programs
What’s in a Recorded Program

2-3

The ASSIGN Statement

The destination in an OUTPUT statement specifies the address of the device. In recorded programs this

address is represented by the I/O path name “@Agilent35670a.” The following line appears in all

recorded programs before any OUTPUT statements:

ASSIGN @Agilent35670a TO 800

The ASSIGN statement substitutes an I/O path name (a variable name preceded by the @ symbol) for a

device selector number. After the above ASSIGN statement, the program line:

OUTPUT @Agilent35670a;"FREQ:SPAN:FULL"

is equivalent to:

OUTPUT 800;"FREQ:SPAN:FULL"

The device selector 800 specifies the host instrument as the destination of any data sent by the OUTPUT

command. The program communicates with the analyzer via select code 8, the internal GPIB interface.

This select code is used solely for communication between Instrument BASIC programs and the

analyzer. The analyzer responds to any address on the internal interface from 800 to 899. (800 is

typically used.)

GPIB Commands

The data sent to the analyzer by the OUTPUT command is called an GPIB command. Many of

the Agilent 35670 GPIB commands conform to SCPI—the Standard Commands for Programmable

Instruments The GPIB command is found in quotes following the device selector path name and

semicolon:

2 OUTPUT @Agilent35670a;"FREQ:SPAN:FULL"

The GPIB commands used in Instrument BASIC are the same ones used to remotely control the analyzer

from an external computer. External computers communicate with the analyzer over the external bus

while Instrument BASIC programs communicate with it over the internal bus. In our example,

“FREQ:SPAN:FULL” tells the analyzer to set the start frequency to its minimum value and the stop

frequency to its maximum value.

Note Many, but not all of the Agilent 35670A’s GPIB commands conform to SCPI. Refer to

GPIB Programming with the Agilent 35670A for a complete description of GPIB

commands, including compliance to SCPI.

For more information on interfacing Instrument BASIC with a bus, see chapter 8, “Interfacing with the

GPIB.”

Recording Programs
What’s in a Recorded Program

2-4

How Recording Works

To fully understand Instrument BASIC recording, it is important to understand the relationship between

the analyzer’s front panel operation and the program that is generated to emulate that operation.

Note GPIB commands entered in a program during a recording session do not necessarily

have a one-to-one correlation with the actual keys that are pressed during that session.

It is important to know that GPIB commands correspond to an operation—not to the front panel’s

hardkeys and softkeys. It may take several keystrokes to perform an operation. Keystroke recording

generates the appropriate GPIB command after you have pressed a valid sequence of keys.

In other words, the functional operation of the analyzer is recorded, not the exact series of keystrokes.

For example, recording the key sequence:

[Freq]
[FULL SPAN]

requires two keystrokes but produces only one command. The command, “FREQ:SPAN:FULL,” is

generated after the sequence is completed. Keystroke recording automatically formats this operation into

the statement:

OUTPUT @Agilent35670a;"FREQ:SPAN:FULL"

and inserts it into the program.

If you accidentally press the wrong key in a sequence, it may not appear in the recorded program. It also

means that you cannot exactly mimic keystrokes to leave the analyzer in a specific front-panel state. The

analyzer’s state appears only as a natural consequence of a completed operation.

For example, in the above example, pressing [Freq] in a recording session has the effect of bringing up

the [Freq] menu. However, it does not, by itself, generate a line of code. You could not, therefore, set the

analyzer to display the [Freq] menu.

Recording Programs
How Recording Works

2-5

Operations That Are Not Recorded

Although in most situations keystroke recording works automatically, there are some operations that are

not captured or are only partially captured using this method. These operations fall into one of the

following areas:

Front panel operations with no corresponding GPIB command such as help text operations, GPIB

controller status, RPG (knob) operations and transitional key sequences.

Operations requiring additional programming steps, such as passing control to the analyzer for

plotting or special handling of measurement operations which arm a trigger.

GPIB operations with no equivalent front panel operations such as GPIB query commands.

Front Panel Operations Without GPIB Commands

There are some front panel operations which have no corresponding GPIB commands.

The help text available through the [Help] hardkey has no corresponding GPIB command. Help cannot

be accessed from the GPIB. Therefore, the keystroke is not recorded.

You cannot remotely change the analyzer’s controller status. This has two significant consequences:

You cannot remotely change the state of the GPIB interface. For example, you cannot change the

analyzer from Addressable Only to the System Controller.

You cannot remotely abort an I/O operation when the analyzer has active control of the GPIB

interface. I/O operations are for printing, plotting or using an external disk drive.

Any front-panel key sequences that perform these operations do not generate an GPIB command. They

are not keystroke recorded.

You must use the numeric keys to enter a numeric value. Even if a front panel operation allows you to

increment or to decrement a value by turning the knob, the entry is not recorded.

During a measurement sequence it may take several key presses to reach an operation that generates a

command. The transitional sequences between actual instrument events are not recorded.

Recording Programs
Operations That Are Not Recorded

2-6

Any default settings you do not select while recording are not recorded.

Note It is important to remember instrument settings not specifically selected or changed are

not recorded.

Since default states are not recorded, you must actively select them to generate a program statement. An

alternate method is to make sure the analyzer is in the same exact state when the program runs as it was

when the program was recorded. This is discussed later in this chapter in “Avoiding Recording Errors.”

Instrument BASIC Operations

Softkeys under the [BASIC] key cannot be recorded because pressing this key turns off keystroke

recording. In addition, [Save/Recall] operations that refer to an external disk drive or to another

Instrument Basic program are not recorded. You can, however, record all the other save and recall

operations which do not refer to Instrument BASIC programs or to an external disk drive.

Although operations in the [BASIC] menus cannot be recorded, many do have corresponding GPIB

commands that allow an external controller to control and communicate with internal Instrument BASIC

programs. See the example program TWO_CTRL in chapter 11 for more information.

Recording Programs
Operations That Are Not Recorded

2-7

Operations Requiring Additional Programming

Some operations that work well when performed from the front panel have special circumstances that

need additional attention when used in an Instrument Basic program. These operations are

synchronization and active control.

Synchronization

You must always anticipate timing and synchronization when one event must complete before another

can occur. One example of this is when you need to detect a state in the instrument before issuing the

next command. For example, you may want your program to manually arm the trigger for several

measurements, but only after each measurement has successfully completed. You can record the

command to set the analyzer to manual arm mode, and the command to manually arm the trigger, by

pressing key sequences. However, to detect when the analyzer has completed a measurement, you must

edit the program and include a routine that waits for a status register to indicate the event has occurred.

(For an example of this kind of program, see the MANARM program in chapter 11.)

Active Control

The [START PLOT/PRNT] operation, as well as any external disk drive operation, requires the analyzer to

be the active controller on the external bus. This means that the analyzer must be set as the System

Controller before the program runs; or, an external controller must pass active control to the analyzer.

The instrument’s active control of the external interface is automatically passed to the Instrument BASIC

program when it begins running. Active control must be passed back to the analyzer before it can execute

the print/plot or external disk operations.

Although you can keystroke record operations involving an external disk drive or [START PLOT/PRNT],
you cannot successfully run the generated program. You need to add program lines to first pass active

control to the analyzer and then wait for the active control of the bus to be passed back to the Instrument

Basic program. See “Passing and Regaining Control” in chapter 8 for an example of passing control to

the analyzer.

Operations Not Available From The Front Panel

Operations such as querying the analyzer’s status, setting and clearing status registers, transferring data

via the external bus, and transferring data via the serial or parallel ports are not available from the

analyzer’s front panel. These operations cannot be keystroke recorded, but they are useful for GPIB

programming using Instrument BASIC. Refer to GPIB Programming with the Agilent 35670A, and to

chapters 8, 9, and 10 in this manual for information about these types of operations.

Recording Programs
Operations That Are Not Recorded

2-8

Avoiding Recording Errors

This section describes ways to minimize the mistakes you can make when using keystroke recording.

Use Preset

You should preset the analyzer before recording a measurement sequence and again before running the

recorded program. This sets the instrument to its default state. It avoids the risk of creating a program

that depends on instrument settings that were present at the time of the keystroke recording but may be

different when the program runs.

To include the command that presets the analyzer, press [Preset] [Do Preset] immediately after enabling

keystroke recording. This inserts the following line before all the other OUTPUT statements in your

program:

OUTPUT @Agilent35670a;"SYST:PRES"

This sets the analyzer to its default state.

Selecting Specific Parameters

You may not want to preset the analyzer before a recorded program runs because you are recording a

section of a larger measurement sequence. In this case, be sure to activate every instrument setting you

need in your automated sequence. For example, if you want the format to be SINGLE, press [Disp
Format] and then [SINGLE], even though SINGLE is already the default setting. This generates a program

line which specifically sets the format to SINGLE.

Recording Programs
Avoiding Recording Errors

2-9

Use GPIB Echo

You can review the GPIB commands before you actually record them. While this is not essential, it can

be very useful when you are in doubt as to what a particular key sequence will record, or precisely when a

key sequence corresponding to an GPIB command is completed.

GPIB Echo is a facility that allows you to view GPIB commands corresponding to any operation executed

from the front panel. A command appears in the upper left corner of the display (the third line) as you

complete any key sequence that has a matching GPIB command. See figure 2-1. This command is the

same as those generated in your recorded program during a recording session.

At power-up, the default status of GPIB Echo is off. To turn on GPIB Echo, press:

[Local/GPIB]

[GPIB ECHO ON OFF]

Recording Programs
Avoiding Recording Errors

2-10

Figure 2-1. GPIB Echo

GPIB Command Line

Program Buffers and the Active Program

You can record, load, or save your programs into any one of five available locations in memory called

“program buffers.” Only one of these buffers is active at any one time. This is called the active program.

The active program defaults to Program 1 at power-up.

You can run any one of the five possible programs by pressing the softkey corresponding to that program

in the [BASIC] menu. It becomes the active program. The name of the active program appears in the

status line at the top of the screen. See figure 2-2.

You can also run the currently active program by pressing the [RUN PROGRAM] softkey in the

[INSTRUMNT BASIC] menu.

Selecting the Active Program

Selecting any one of five possible programs to be the active program is simple. From the [BASIC] menu,

press [INSTRUMNT BASIC] and then press [SELECT PROGRAM]. The five program softkeys are presented.

Press the softkey of the program you want to be the active program. See figure 2-2.

To record a front-panel operation into a non-active program, select the program with the

[SELECT PROGRAM] menu, then press the [ENABLE RECORDING] softkey.

Recording Programs
Program Buffers and the Active Program

2-11

Figure 2-2. The [[Select Program] Menu

Current Active Program

For example, the following keystrokes, select Program 4 as the active program and record a single

front-panel operation.

[BASIC]
[INSTRUMENT BASIC]
[SELECT PROGRAM]
[PROGRAM 4]

[Rtn]
[ENABLE RECORDING]

[Disp Format]
[UPPER/LOWER]

[BASIC]

Program 4 is the active program and contains a three line program. Although it is very short, it is a

representative recorded program.

Changing a Program Label

You can change the softkey label for the active program. Press the [LABEL PROGRAM] softkey in the

[INSTRUMNT BASIC] menu. The alpha entry menu appears on the display. The current label appears in an

entry window at the top of the screen. Use the menu and the alpha keys (or your keyboard) to change the

name. When you finish editing the name, press [ENTER].

You can change the softkey label for each of the five program buffers by first selecting the appropriate

program as the active program.

Recording Programs
Program Buffers and the Active Program

2-12

3

Controlling Programs

3

Controlling Programs

You can start, pause and stop an Instrument BASIC program from the Agilent 35670A front panel using

various hardkeys and softkeys. This chapter describes how to control an Instrument Basic program.

GPIB commands can control Instrument Basic programs over the external bus. You can use an external

controller to run Instrument Basic programs. For information on running, pausing and stopping programs

from an external controller see chapter 8, “Interfacing with the GPIB.”

3-1

Running and Continuing a Program

The [BASIC] menu displays five program softkeys, corresponding to the five program buffers. See figure

3-1. The status line at the top of the screen indicates which program is currently the active program.

These softkeys are initially labeled [RUN PROGRAM 1] through [RUN PROGRAM 5], but can be changed to

display your own labels (see “Changing a Program Label” in chapter 2). Pressing one of these softkeys

selects that program as the currently active program and runs the stored program. This menu gives you

immediate access to running any one of five Instrument Basic programs.

In the [BASIC] menu you will also find the [INSTRUMNT BASIC] softkey. Pressing this key brings you into

the Instrument Basic operating environment. The menu that’s displayed applies only to the currently

active program.

To run the active program, press:
[BASIC]

[INSTRUMNT BASIC]
[RUN PROGRAM]

There is also a [RUN PROGRAM] key in the [BASIC] [INSTRUMNT BASIC] [DEBUG] menu. This key allows

you to run the currently active program during program debugging (see chapter 6, “Debugging

Programs”). Both of these softkeys perform the same Instrument BASIC RUN command.

The RUN command is executed in two phases: prerun initialization and program execution.

Controlling Programs
Running and Continuing a Program

3-2

Figure 3-1. The [[BASIC] Menu

The prerun phase consists of:

Reserving memory space for variables specified in COM statements (both labeled and blank).

Reserving memory space for variables specified by DIM, REAL, INTEGER, or implied in the main

program segment. Numeric variables are initialized to 0; string variables are initialized to the null

string.

Checking for syntax errors that result from multiple program statements. Incorrect array references

and mismatched parameters or COM lists are examples of these types of syntax errors.

After the prerun phase successfully completes, the program continues executing until one of the following

events occurs:

The program encounters an END or STOP statement.

The program encounters a PAUSE statement.

You press the [Local/GPIB] hardkey to stop the program.

You press the [BASIC] hardkey to pause the program.

You press the [Preset] hardkey to stop the program.

Controlling Programs
Running and Continuing a Program

3-3

Pausing a Program

You can pause a program by pressing the [BASIC] hardkey. Another way to pause a program is to insert

a PAUSE statement into your program. (Refer to chapter 5, “Developing Programs,” to learn how to

insert statements into your recorded program.) In either case, the analyzer temporarily stops executing

the program.

To continue a paused program, press the [CONTINUE] softkey in the [BASIC] menu or in the
[INSTRUMNT BASIC] [DEBUG] menu. Continuing a paused program resumes the operation from where it

was paused in the program. The program retains the values for any variables.

Pausing a program does not close any files that have been opened by the program. You will not be able

to perform any of the following disk operations from the front panel after pausing a program that has left

a file open on that medium:

RENAME FILE

DELETE FILE

DELETE ALL FILES

COPY FILE

COPY ALL FILES

FORMAT DISK

An Instrument BASIC “RESET” closes all open files. Press the [Local/GPIB] hardkey while the program

is running or press the [RESET] softkey in the [BASIC] [INSTRUMNT BASIC] [DEBUG] menu when the

program is paused. There is one exception. An Instrument Basic “RESET” does not close a file if it is

the device for the PRINTER IS statement.

Keystroke recorded programs do not open files and therefore avoid this problem.

Controlling Programs
Pausing a Program

3-4

Stopping a Program

To completely stop a program, press the [Local/GPIB] hardkey at any time while the program is running.

This causes an Instrument BASIC “RESET.” If the analyzer is under remote control, pressing the

[Local/GPIB] hardkey twice also resets an Instrument Basic program. (The first press brings the

instrument back to local and the second press resets the program.) A STOP statement in your program

terminates the program but does not perform the reset operation.

Note While the program is executing an INPUT statement, pressing the [Local/GPIB] hardkey

brings the program under local (front panel) control. This enables the front panel’s

alpha keys. Pressing [Local/GPIB] again, enters an “X” on the input line. In this case,

press the [Preset] hardkey to abort the program.

Variables retain their value after an Instrument Basic RESET. Press [BASIC] [INSTRUMNT BASIC]

[DEBUG] [EXAMINE VARIABLE] to examine variable values.

Pressing [Preset] stops a running program. It will also set the PRINTER IS device to the display (CRT).

For more information on the PAUSE and STOP statements see the “ Instrument BASIC Language

Reference” section of the Instrument Basic Users Handbook.

Controlling Programs
Stopping a Program

3-5

4

Saving and Recalling Programs

4

Saving and Recalling Programs

Instrument BASIC programs can reside in memory, on disk, or in an external computer.

Transferring Programs

From the front panel you can transfer a program between memory and disk with the [Save/Recall] menus.

Within a program, you can use the GET, SAVE, RE-SAVE, LOAD, STORE, and RE-STORE statements

to transfer program files to and from disk. The Agilent 35670A has an autoload feature which

automatically recalls and runs a program from disk at power-up.

You can transfer a program file between the analyzer and an external controller. You can keystroke

record a measurement sequence and then upload the program to the external controller for further editing.

Programs developed on an external controller can be downloaded as well. Chapter 8, “Interfacing with

the GPIB,” describes methods of transferring programs between the Agilent 35670A and an external

controller.

This chapter describes transferring Instrument Basic programs between program memory and the

Agilent 35670A’s volatile, non-volatile, internal, and external disk drives. The autoload feature is

described at the end of this chapter.

4-1

Disk Formats and File Systems

To successfully transfer an Instrument Basic program file, you must first understand the disk formats and

file systems recognized by the Agilent 35670A.

Instrument Basic in the Agilent 35670A recognizes two disk formats: LIF (Logical Interchange Format),

and DOS (Disk Operating System). Formatting or initializing a disk determines the format of a disk or

file system.

A LIF disk contains only one directory. This format should be used to exchange programs and data with

other BASIC computers.

A DOS disk has a hierarchical structure of directories. The DOS format should be used to exchange data

with DOS computers.

The Instrument Basic Users Handbook refers to a third format, HFS (Hierarchical File System). The

Agilent 35670A does not support HFS.

File Types

The Agilent 35670A supports three file types:

ASCII

BDAT

untyped (referred to as DOS or HP-UX files)

“File type” is independent of disk format. ASCII, BDAT and untyped files exist on either LIF or DOS

disks. Untyped files appear as HP-UX in the catalog of a LIF disk, or as DOS in the catalog of a DOS

disk. To view the catalog of the analyzer’s default disk, press:

[Disk Utility]
[CATALOG ON OFF]

In Instrument Basic, the “CREATE ASCII” command creates an ASCII file, the “CREATE BDAT”

command creates a BDAT file, and the “CREATE” command creates an untyped file.

For more information, refer to “Disk I/O” in chapter 12 of this manual and the “Data Storage and

Retrieval” chapter in the “ Instrument BASIC Programming Techniques” section of the Instrument

BASIC Users Handbook.

Note The [COPY FILE] operation in the [Disk Utility] menu does not translate file types when you

copy files across different file systems (DOS/LIF). Verify you are using the appropriate

file type before copying a file.

Saving and Recalling Programs
Disk Formats and File Systems

4-2

DOS Conventions

On DOS disks, file names must conform to DOS conventions. File names are limited to 8 characters

followed by a period and a three character extension. The period and extension are not required. File

names are not case sensitive. For example, the following file names are equivalent:

PROG.ASC = Prog.ASC

The Agilent 35670A does not allow “wild card” characters in file names. You can use a wild card in disk

operations.

The Agilent 35670A recognizes a directory path. For example:

ASSIGN @File to “\DATA\TEST1\BEFORE”

opens the file named “BEFORE” in the sub-directory “TEST1” under the directory “DATA.” Use a “\”

or a “/” to separate directory and file names. The file specifier can include a directory path. You can

create a DOS directory from the front panel with the [Disk Utility] [DEFAULT DISK] [CREATE DIRECTORY] key.

You can create a DOS directory from a program with the CREATE DIR statement.

Using a DOS Disk to Transfer Data With a PC

You can transfer data from the Agilent 35670A to an IBM-compatible personal computer by writing an

Instrument Basic program that outputs the data to a DOS disk.

To ensure a successful transfer, remember:

Specify the correct disk format. Either format the disk on the PC, or use the Agilent 35670A and the

correct format option with the [FORMAT DISK] operation in the [Disk Utility] menu. You can determine

the format of a disk by looking at its catalog. Press [Disk Utility] [CATALOG ON OFF].

Create untyped DOS files with the CREATE command. Untyped files on DOS disks are extensible.

They “grow” to the size needed. ASCII and BDAT files are not extensible. They usually cannot be

read by other DOS applications.

Open files with the FORMAT ON option of the ASSIGN command. FORMAT ON directs

Instrument Basic to store the data as ASCII characters.

You can also transfer Instrument Basic programs to a personal computer using a DOS disk. The GET

statement recalls Instrument Basic programs from a DOS file into the analyzer’s memory. The [RE-SAVE
PROGRAM] softkey and the SAVE statement create untyped DOS files on a DOS disk.

For additional information about input and output operations, refer to “Front Panel Operations versus

Keyword Statements” later in this chapter and “Disk I/O” in chapter 12, “Instrument-Specific Instrument

Basic Features.”

Saving and Recalling Programs
Disk Formats and File Systems

4-3

LIF Conventions

On LIF disks, file names must conform to LIF conventions. File names are limited to 10 characters

which include all characters except “:”, “<”, and “|”. Some LIF implementations do not allow lowercase

letters.

LIF does not allow directories but you can label the disk with a volume name. The volume name is

assigned at initialization.

Using a LIF Disk to Transfer Data with an BASIC computer

You can transfer data from the Agilent 35670A to an BASIC computer by writing an Instrument Basic

program that outputs the data to a LIF disk.

To ensure a successful transfer, remember:

Specify the correct disk format. Use the [FORMAT DISK] operation in the [Disk Utility] menu. You can

determine the format of a disk by looking at its catalog. Press [Disk Utility] [CATALOG ON OFF].

Use the CREATE ASCII command to create an ASCII file. A LIF protect code is not allowed on an

ASCII file.

Use the CREATE BDAT command to create a BDAT file. Instrument Basic allows and supports a

LIF protect code on a BDAT file.

Open files with the FORMAT option of the ASSIGN command. FORMAT ON directs Instrument

Basic to store the data as ASCII characters. FORMAT OFF, which is faster and takes less space,

defaults to BDAT representation.

You can also transfer Instrument Basic programs to an BASIC computer using a LIF disk. The GET

statement recalls Instrument Basic programs from a LIF file into the analyzer’s memory. The [RE-SAVE
PROGRAM] softkey and the SAVE statement create ASCII files on a LIF disk.

For additional information about input and output operations, refer to “Front Panel Operations versus

Keyword Statements” later in this chapter and “Disk I/O” in chapter 12, “Instrument-Specific Instrument

Basic Features.”

Saving and Recalling Programs
Disk Formats and File Systems

4-4

Program Buffers

The Agilent 35670A has five program buffers in memory. The BASIC menu accesses each program

buffer with a set of softkeys initially labeled [PROGRAM 1] through [PROGRAM 5]. Each buffer can hold a

separate program.

You can transfer programs between any disk and any program buffer but you cannot directly transfer

programs between buffers. A program that is recalled into a buffer overwrites the previous contents of

that buffer.

You can, however, append program files to build one functional program. See “Appending Program Files

From Disk,” later in this chapter.

Memory

Instrument Basic in the Agilent 35670A supports four mass storage devices:

A volatile RAM disk (:MEMORY,0,0).

A non-volatile RAM disk (:MEMORY,0,1).

An internal disk drive (:INTERNAL).

An external disk drive (Agilent Technologies Subset/80) (:EXTERNAL,7xx, uu).

To specify the default storage device, use the MASS STORAGE IS command.

Saving and Recalling Programs
Program Buffers

4-5

Front Panel Operation versus Keyword Statements

There are two ways to transfer program contents between disk and memory. You can transfer programs

by either:

Using the [Save / Recall] key in the SYSTEM group on the front panel

or

Using the keyword statements SAVE, RE-SAVE and GET

The choice of which to use requires some knowledge of the advantages of each as well as your own

particular requirements. Both methods are discussed in the following section.

The [Save / Recall] Menu

With the [Save/Recall] menu you can perform a variety of disk and file operations, as well as transfer

complete programs between any of the five program buffers and any disk file. These menus have the

following advantage:

You can transfer programs directly between any file on disk and any of the five program buffers.

The analyzer allocates memory automatically when you recall a program.

The utilities are similar to the other save and recall operations in the analyzer.

You can select a file in the catalog without typing in the name.

The Keyword Statements (SAVE, RE-SAVE and GET)

In an Instrument Basic program, the keyword statements SAVE, RE-SAVE, and GET, save all or part of

that program to disk. They also merge a program with a program from disk.

The SAVE, RESAVE, and GET keyword statements have the following advantages over the

[Save/Recall] menu:

You can store parts of a program to disk.

You can recall programs and append them at any line in the currently active program.

They are familiar to BASIC programmers.

Saving and Recalling Programs
Front Panel Operation versus Keyword Statements

4-6

Saving a Program to Disk

To save the current contents of the program buffer to a disk file, use the [Save / Recall] menus. This is the

same system used for all disk access in the Agilent 35670A.

If you are saving a program to a new file name, press:

[Save / Recall]
[SAVE MORE]
[SAVE PROGRAM]

Type the name of the disk file in the entry window. You can use a keyboard or the front panel alpha

keys. Instrument BASIC programs are stored as ASCII files on LIF disks and as untyped files on DOS

disks.

Re-saving a program is similar to saving a file to a disk. In this case however, the disk already contains

an existing file with the same name. The analyzer requires you to press an additional softkey,

[OVERWRITE FILE], to confirm that you want to overwrite the existing file.

To make the re-save process easier, use the disk catalog to select a file name. The catalog describes the

contents of the default disk. To use the catalog, press the Agilent 35670A keys as follows:

1. [Save / Recall]

2. [CATALOG ON OFF]

3. Use the knob to highlight the desired file name. The name appears in the entry window.

4. [SAVE MORE]

5. [SAVE PROGRAM]

6. [ENTER]

7. [OVERWRITE FILE]

The analyzer automatically re-saves the file with the file name you selected.

Saving and Recalling Programs
Saving a Program to Disk

4-7

Recalling a Program from Disk

When you recall a program file from the disk, it is loaded into the active program buffer. Any program

recalled to the program buffer using the [Save / Recall] menus overwrites the current contents of the active

program buffer.

To recall a program file from the disk to the active program buffer, press the Agilent 35670A keys as

follows:

1. [Save / Recall]

2. [RECALL MORE]

3. [RECALL PROGRAM]

4. Enter the file name in the entry window.

5. [ENTER]

As with any recall operation, you can use the catalog. Press the Agilent 35670A keys as follows:

1. [Save / Recall]

2. [CATALOG ON OFF]

3. Move the knob to select the file name. The name appears in the entry window.

4. [RECALL MORE]

5. [RECALL PROGRAM]

6. [ENTER]

The recalled program file is entered into the program buffer one line at a time and checked for syntax

errors. Lines with syntax errors are commented out. The Instrument BASIC syntax error is displayed

briefly in a pop-up message window. The error message is also written to the CRT. See chapter 5,

Developing Programs, for information on allocating display partitions to view error messages.

Memory is allocated for the program’s variables and working space (called the stack). When you use the

[Save / Recall] menus to recall a program, memory is allocated automatically. For certain kinds of

programs, the memory size may need to be increased.

See chapter 5 for more information on memory size.

Saving and Recalling Programs
Recalling a Program from Disk

4-8

Appending Program Files from Disk

To append program files from disk to the current program in memory, use the GET statement within a

program. The GET statement recalls a specified file from the disk and appends it at a specified line in the

current program (or at the beginning of the program if a line is not specified).

The following example program appends three program files to itself to build one functional program. It

demonstrates how to merge files. It also provides a set of error-handing routines for your recorded

programs.

The example program builds a shell composed of:

an initialization program section.

a typical keystroke recorded section.

a cleanup section that contains error-traps and timeout-traps.

The core five line program (program lines 50 - 90) chains the other three programs segments to itself.

These five program statements must be deleted or commented out before you run the program.

All of these files are on the Agilent 35670A Example Programs disk:

SHELLBEG provides the setup and initialization.

SHELLDEM is a typical keystroke recorded program.

SHELLEND provides error-handling routines and cleanup.

SHELLCHA pulls all files together using GET statements.

The file SHELLCHA contains the following program:

10 ! SHELLCHA: Program demonstrates chaining program segments
20 !—————————————————————————————-
30 ! NOTE: Delete Lines 30 thru 90 immediately after
40 ! running SHELLCHAIN program
50 GET “SHELLBEG:,4",X,60
60 GET “SHELLDEM:,4",X,70
70 GET “SHELLEND:,4",X,80
80 DISP “Delete lines 30 - 90 before running program”
90 GOTO Endlabel
100 X:END

Line 50 performs a GET of the file “SHELLBEG” from the internal disk drive. It appends the file at line

100 (labeled “X:”) and overwrites that line. It then instructs the program to continue at line 60.

The “SHELLBEG” file has a label “X:” as its last line. The program in memory also has that same label

as its last line. Line 60 performs a GET of the file “SHELLDEM,” appends it at the current label “X:”

and then continues the program at line 70.

The SHELLDEM file also contains a label “X:” as its last line. Line 70 of the SHELLCHA program

performs a GET, which appends the SHELLEND program file to the end of the program in memory.

Saving and Recalling Programs
Appending Program Files from Disk

4-9

Finally, line 90 of the SHELLCHA program skips to the label “Endlabel.” This label, which was at the

end of the SHELLEND file, is now at the end of the program in memory. The program would go on to

execute the SHELLBEG program if the Endlabel line had been omitted. That is, without the Endlabel

line, the program would run itself immediately after appending the three program files.

Note Remember to comment out or delete program lines 30-90 before running the combined

program.

To use the SHELLCHA program with your own recorded program do the following:

1. Insert the label “X:” in the line containing the END statement of your recorded program. Make sure

you have not used the label “X:” elsewhere in your program.

2. Recall the SHELLCHA program and change the file name in line 60 from “SHELLDEM” to the

name of your program file.

Saving and Recalling Programs
Appending Program Files from Disk

4-10

Autoloading a Program

Instrument BASIC allows you to automatically load one or more programs and run a designated program

when you turn on the analyzer. To make an autoloading program, save it to the nonvolatile RAM disk or

to a floppy disk in the internal drive with one of the following names:

AUTO_BAS

AUTO_BA1

AUTO_BA2

AUTO_BA3

AUTO_BA4

AUTO_BA5

At power-up, Instrument BASIC searches the internal disk drive and then the nonvolatile RAM disk for

files with these special names. It searches for files in the order listed above, but it does not search for

AUTO_BA1 if AUTO_BAS is found. If AUTO_BAS is found, it is loaded into the first program buffer

and executed after all other programs have been loaded. If AUTO_BA1 through AUTO_BA5 are found,

they are loaded into the first through fifth program buffers—but they are not executed.

Since the AUTO_BAS program is run after all programs are loaded, you may find useful to have this

program re-label the softkeys that run the loaded programs. The GPIB command “PROG:EXPL:LAB” is

used to re-label these softkeys. For example, the following statement changes the first program buffer’s

softkey label to “FINAL TEST”:

OUTPUT 800; “PROG:EXPL:LAB PROG1,’ FINAL TEST’”

To disable automatic loading of the AUTO_BA* files, press the [Preset] hardkey while you turn on the

analyzer.

Saving and Recalling Programs
Autoloading a Program

4-11

5

Developing Programs

5

Developing Programs

Overview

For many applications, you can easily record and run programs without altering the program code that is

generated with keystroke recording. However, with some knowledge of the Instrument BASIC language

and the program development capabilities in the Agilent 35670A, you can add immeasurable power to

your recorded programs. You can also create programs without using the keystroke recording feature.

This chapter describes the operation of the keys under the [INSTRUMNT BASIC] menu. See figure 5-1. At

the end of the chapter the [DISPLAY SETUP] softkey (in the [BASIC] menu) is discussed. This softkey

presents a menu that lets you manage a part of the screen display for output from the program.

5-1

Figure 5-1. The [INSTRUMNT BASIC] Menu

The ability to change and enhance your program and its operating environment is found primarily under

the [EDIT] and [UTILITIES] menus.

Pressing [EDIT] places you in the Instrument Basic editor. You can make changes to your program

on a line-by-line basis using a keyboard or the front panel alpha-numeric keys.

Pressing [UTILITIES] presents a menu of helpful utilities. You can make global changes to the

program and its environment. You can renumber lines, allocate memory size, and remove the

program.

Pressing the [PRINT PROGRAM] softkey prints a hard copy program listing to an attached printer.

Developing Programs

5-2

Using the Instrument Basic editor

The Instrument BASIC editor allows you to create and alter program text. If you are familiar with the

9000 Series 300 BASIC editor, you will find it similar. If not, you should find the Instrument Basic

editor easy to learn and to use. This section tells you how to enter and edit an Instrument BASIC

program.

To start the editor, press the [EDIT] softkey in the [INSTRUMNT BASIC] menu. The program, if one exists,

usually appears on the display with the cursor on the first line of the program. If the program buffer is

empty, the first line number (10) appears with the cursor positioned to enter text.

The current program line (the line containing the cursor) always appears as two lines on the screen,

allowing you to enter up to 108 characters. The other lines display the first 51 characters (excluding line

numbers).

The first 6 columns of each line are a numeric field specifying the program line number. Line numbers

are right justified. Program lines are automatically numbered by the editor. You can manually edit the

current line number to copy or move it a to different location in the program. Line numbers can also be

renumbered in blocks with the [UTILITIES] [RENUMBER] softkey menu. Line number range from 1 to

32766.

Once in the [EDIT] menu you can use your keyboard or the front panel alpha-numeric keys.

Developing Programs
Using the Instrument Basic editor

5-3

Using the Instrument Basic Editor With a Keyboard

Using a keyboard makes developing Instrument Basic programs easy.

All of the “typewriter” keys are enabled. Letters can be entered in lower or upper case. All punctuation

marks and special characters can be entered using the Agilent approved PC keyboard. See figure 5-2.

The [Enter] key is used to store each line of program code and completes each alpha-numeric entry. The

analyzer checks the line for syntax errors. If it detects an error, a pop-up message window displays the

syntax error. If the analyzer does not detect an error, it stores the line.

Note If you edit or enter text on the current program line and then move off the line without

pressing the [Enter] key, all editing on the line is lost.

The [Tab] inserts two spaces. Pressing [Shift] [Tab] moves the cursor backwards two spaces.

The Agilent 35670A softkey menus load into the keyboard function keys, [F1] through [F9]. The [Rtn]

hardkey loads into [F10]. The [Help] hardkey loads into [F12]. [F11] is not enabled. See figure 5-2.

The “cursor” keys are enabled. The arrow keys indicate the direction in which they move the cursor.

The [Home] key moves the cursor to the beginning of the current line. The [End] key moves the cursor to

the end of the current line.

The [Page Up] key moves the cursor a maximum of 15 lines upward. The [Page Down] key moves the

cursor a maximum of 15 lines downward.

Developing Programs
Using the Instrument Basic editor

5-4

Figure 5-2. Using a keyboard with the Agilent 35670A.

The [Insert] key inserts a new line of text. To get out of the insert mode, press the [Insert] key again or

move the cursor off the current line. Remember, to save an edit you must press [Enter] while the cursor

is on the current line.

The [Delete] key erases the character where the cursor is positioned. In addition, all characters to the

right of the deleted character move one character to the left.

Pressing the [Shift] [Delete] keys deletes the current program line.

Pressing the [Alt] [Delete] keys ([Alt Gr] [Delete] keys on a non-U.S. English keyboard) deletes all

characters from the current cursor position to the end of the line.

The [Print Screen] key is enabled. You can print the entire screen (excluding the softkey menu text) to an

attached printer.

The [Alt] key is not enabled except when used to preset the analyzer.

Key presses made with the keyboard that have no meaning in a given operating context are ignored, just

as they are when pressed from the front panel.

Caution Pressing the [Del] key with the [Alt] key and the [Ctrl] key, presets the analyzer. (Just

like a soft reboot in an IBM-compatible PC!)

Developing Programs
Using the Instrument Basic editor

5-5

To end an editing session, press the [F9] key, which corresponds to the [END EDIT] softkey. This returns

you to the [INSTRUMNT BASIC] menu.

Connecting your keyboard

To connect the keyboard to the Agilent 35670A, plug the round connector into the analyzer’s rear panel.

See figure 5-4.

Caution Use only the Agilent approved keyboard on this product. Agilent does not warrant

damage or performance loss caused by a non-Agilent approved keyboard.

Developing Programs
Using the Instrument Basic editor

5-6

Figure 5-3. Mapping of Agilent 35670A Softkeys

If you are using an international keyboard, specify the type of keyboard with the [KEYBOARD SETUP]

softkey in the [System Utility] menu.

Developing Programs
Using the Instrument Basic editor

5-7

Figure 5-4. Connecting the Keyboard

Using the [EDIT] Softkeys

The [EDIT] menu contains the softkeys shown in figure 5-5.

You can move the cursor around in the program using the knob on the front panel or the cursor keys on

the keyboard. When you get to a line you want to change, make the change and press the [ENTER]

softkey or the [Enter] key on the keyboard. The analyzer checks the line for syntax and then stores it if

the syntax is correct.

Developing Programs
Using the Instrument Basic editor

5-8

Figure 5-5. The [EDIT] Menu

Getting Around in the Program

You can move the cursor from line to line within an existing program by:

Using the knob

Using the [GOTO LINE] softkey to jump directly to a specific line number or label

Using the [ENTER] softkey (when not in insert mode) to step one line at a time

Using the [Enter] key on the keyboard

Using the cursor keys on the keyboard.

Using the Knob

You can move the cursor in the EDIT mode with the knob on the front panel.

The line that the cursor is on is always the edited line. Rotating the knob clockwise on the currently

edited line moves the cursor to the right. Rotating the knob counterclockwise moves the cursor to the left.

When the cursor is at the end (far right) of the edited line, turning the knob clockwise moves the cursor

down to the end of the next line. Conversely, when the cursor is at the beginning (far left) of the edited

line, turning the knob counterclockwise moves the cursor to the beginning of the preceding line.

Using GOTO LINE

To jump immediately to any line or label in the program press the [GOTO LINE] softkey ([F8] on the

keyboard). Enter the line number or the label of the line into the entry window and press [ENTER]. To

specify a label, use the keyboard or use the front-panel keys and the optional [(_)] underscore softkey.

You can enter the label in capital letters and it automatically converts to the proper case.

If the specified line exists, it appears in the middle of the display as the current program line. If you have

specified a line number that doesn’t exist, the cursor is placed on the line number closest to it. Specifying

a non-existent line label generates an error message, “Line not found in this context.”

A quick way to go to the last line of the program is to enter a number much larger than the largest

possible program line number such as 99999 (or any number greater than 32766 or the last line number of

your program).

Using the [ENTER] Softkey

You can use the [ENTER] softkey to move the cursor down one line at a time. All other softkeys that

move the cursor alter program text.

Using the Keyboard

See the previous section, Using the Instrument BASIC Editor With a Keyboard, for a description of

getting around the program using the keyboard.

Developing Programs
Using the Instrument Basic editor

5-9

Entering Program Lines

When you finish entering or changing a program line, store it by pressing [ENTER]. The analyzer checks

the line for syntax errors and converts letter case to the required form for names and keywords

(Instrument BASIC commands). If it detects an error, a pop-up message window displays the syntax

error. If no errors are detected, it stores the line.

Note If you edit or enter text on the current program line and then move off the line without

pressing [ENTER], all editing on the line is lost.

Renumbering, Copying and Moving Lines

If you want to change the line number of an edited program line, move the cursor to the line number field

and enter a new line number. Changing the line number copies the line. The line does not move. To

move the line, change the line number, press [ENTER] and then delete the original line.

If you want to revise and move the current line, edit the line, change the line number and then press

[ENTER]. The revision only appears in the copied line.

If you change the line number and you are in insert mode, you remain in insert mode at the new line

number.

When the cursor is in the line number field, entries operate in an overtype mode rather than in the insert

mode as in the text portion of the program line. The [Back Space] hardkey in the numeric keypad

moves the cursor over line numbers without deleting the number.

Inserting Spaces

Use the [INSERT SPACE] softkey to place a space at the position of the cursor. The text to the right of the

cursor moves one place to the right. This softkey is located in more than one menu.

To insert a space with your keyboard, press the space bar.

Developing Programs
Using the Instrument Basic editor

5-10

Inserting Lines

You can easily insert one or more program lines above any existing line by placing the cursor on the

existing line and pressing [INSERT LINE]. The [INSERT LINE] softkey toggles the insert mode on or off.

If you are using a keyboard, press the [Insert] key to insert a line. Pressing the function key [F3], also

turns the insert mode on or off.

In the following example we use the [INSERT LINE] softkey to insert lines between two adjacent programs

lines numbered 90 and 100.

Move the cursor to line 100 and press [INSERT LINE]. A new line, numbered 91, appears between line 90

and line 100. After you type something on the inserted line, press [Enter] to store it and another line,

numbered 92, appears. If you continue to insert new lines and the inserted line number increments to 100,

the current line 100 is renumbered to 101 to accommodate the inserted line.

To get out of insert mode, press [INSERT LINE] again or use the knob to move off of the current line.

(Remember, any edits you make to the currently inserted line are lost if you leave insert mode without

pressing [ENTER].) Make sure you have entered any changes to your final inserted line before exiting the

insert mode.

Recalling Deleted Lines

If you used the [DELETE LINE] softkey or the [Shift] [Delete] keys to remove a line, the [RECALL LINE]

softkey automatically recalls that line. This is useful for recovering lines deletedby mistake.

It is also useful for moving a line. Delete the line, move to the desired area of the program and press

[INSERT LINE] ([F3] on the keyboard). Press [RECALL LINE] ([F5] on the keyboard) and then edit the

recalled line to the current line number.

Note Pressing [RECALL LINE] automatically aborts any changes made to the currently edited

line.

Developing Programs
Using the Instrument Basic editor

5-11

Using the Front-Panel Alpha Keys

If you do not have a keyboard, you can use the alpha keys on the front panel of the Agilent 35670A.

Nearly every hardkey is labeled with a corresponding letter of the alphabet. These may be familiar to you

if you have performed any editing function on the Agilent 35670A, such as specifying a unique filename

in a [Save/Recall] operation.

The alpha keys are arranged in alphabetical order from left to right, descending the front-panel hardkeys.

See figure 5-6.

You do not have to use the alpha keys to enter Instrument BASIC keywords. They can be entered via the

[TYPING UTILITIES] menu. The front panel alpha keys are necessary to enter variable names, constants,

labels and strings if you are not using a keyboard.

When in the Instrument Basic editor, the front-panel keys are automatically in alpha mode. Pressing an

alpha key enters the character at the cursor position in the current program line. When you exit the editor

([END EDIT]) the front-panel keys return to their labeled hardkey function.

Changing Case

The case of an alpha key is determined by the state of the [TYPING UTILITIES] [UPPERCASE lowercase]

key. The default is uppercase. To enter lowercase letters, press the [UPPERCASE lowercase] key.

If you are using the keyboard, the case is determined by the [Caps Lock] key.

Developing Programs
Using the Instrument Basic editor

5-12

Figure 5-6. Agilent 35670A front panel alpha-numeric keys

Using [TYPING UTILITIES]

The [TYPING UTILITIES] allows you to enter non-alphabetic symbols and insert Instrument BASIC

keywords without a keyboard. See figure 5-7.

The [ENTER], [INSERT SPACE], and [DELETE CHARACTER] keys are carried over from the [EDIT] menu. In

addition, this menu contains the [UPPERCASE lowercase] key and the [INSERT KEYWORD] key.

Developing Programs
Using the Instrument Basic editor

5-13

Figure 5-7. The [TYPING UTILITIES] Menu

Entering Symbols

Symbols are available in four menus. Each menu is labeled “INSERT” followed by a list of the available

symbols in that menu.

For example, to enter an equal symbol (=), press [TYPING UTILITIES], then press [INSERT +-*^/=()]. This

brings up a softkey menu with each of the symbols listed in the label as a separate softkey. Press the

softkey labeled [=].

Entering Keywords

You do not have to type an entire Instrument Basic keyword if you use the [INSERT KEYWORD] softkey in

the [TYPING UTILITIES] menu. When you are in the [INSERT KEYWORD] menu, pressing any alpha key

presents a menu of keywords beginning with that letter.

For example, pressing [INSERT KEYWORD] and then the alpha key “F” (the [Active Trace] hardkey)

presents a menu with the following softkeys:

[FN]

[FNEND]

[FOR]

[FORMAT]

[FRACT(]

[CANCEL]

Pressing any one of these softkeys, other than [CANCEL] enters the corresponding text into the current

program line. Keywords are always inserted in uppercase regardless of the current setting of the

[UPPERCASE lowercase] softkey.

In cases where there are more than eight keywords starting with a particular letter, a softkey labeled

[MORE] appears which allows you to access the rest of the keywords of that letter. When the last set of

keywords is displayed, press [MORE] to get back to the first set. This allows you to cycle through all the

keywords starting with a specific letter.

After pressing [INSERT KEYWORD] you can skip from one keyword menu to another simply by pressing

another front-panel alpha entry key.

Notice that all keywords that require an argument are provided with the beginning parenthesis; for

example, [FRACT(]. The parenthesis indicates the keyword as requiring an argument. When this

keyword is selected, the keyword and both parentheses are inserted in the program line with the cursor

placed automatically between the two. All keywords that require an argument are inserted this way.

To return to the previous menu without selecting a keyword, press [CANCEL].

Developing Programs
Using the Instrument Basic editor

5-14

Recording into an Existing Program

Another way to enter lines into your program is to use the keystroke recording capabilities of Instrument

BASIC. To record measurement sequence operations into your program, move the cursor to the line

where you want the recorded statements inserted. Then press [END EDIT], press [ENABLE RECORDING] and

proceed with your recording as you normally would. Press [BASIC] to conclude the recording session

as usual.

The inserted recording acts the same as if you had pressed [INSERT LINE] in the editor, and generates

OUTPUT statements in insert mode.

The “ASSIGN @Agilent35670a to 800” statement is not generated when you are recording into an

existing program. The “ASSIGN @Agilent35670a to 800” statement must be included in your program

prior to any recorded OUTPUT commands. If you initially created the program using keystroke

recording, this statement should already exist. If it does not exist, you will need to enter it.

Removing Program Text

The Instrument Basic editor allows you to remove individual characters or entire lines. To learn how to

remove the entire program see the description of the [UTILITY] [SCRATCH] softkey later in this chapter.

Deleting Characters using a keyboard

The [Delete] key on the keyboard erases the character where the cursor is positioned. In addition, all

characters to the right of the deleted character move one character to the left.

The [Backspace] key also removes text. The cursor moves one space to the left and usually erases any

characters in the cursor’s path. It does not erase characters in the program line number field.

Pressing the [Alt] [Delete] keys ([Alt Gr] [Delete] keys on a non-U.S. English keyboard) deletes all

characters from the current cursor position to the end of the line.

Developing Programs
Using the Instrument Basic editor

5-15

Deleting Characters using the [DELETE CHARACTER] softkey

The [DELETE CHARACTER] softkey, [F6] on the keyboard, removes the character under the cursor and

moves all characters to the left one place. Repeatedly pressing [DELETE CHARACTER] causes text to the

right of the cursor to be pulled in and deleted. The [DELETE CHARACTER] softkey functions the same in

both the line number and program statement fields. However, in the line number field, only line numbers

to the right of the cursor are pulled in and deleted. Program statement characters are not deleted when the

cursor is in the line number field.

Another way to remove text on a line is with the [Back Space] key in the front panel’s numeric key pad.

Pressing [Back Space] removes the letter to the left of the cursor and moves the cursor (and all characters

to the right of the cursor) one space to the left. When the cursor is on a line number, pressing the

[Back Space] key simply moves the cursor back one position without deleting the number.

Deleting Lines using a keyboard

Pressing the [Shift] [Delete] keys removes the current program line and places it in a buffer. When the

current program line disappears, all subsequent lines in the display move up one line, but are not

renumbered. The cursor maintains its column-relative position on the next highest numbered line.

If the [Shift] [Delete] keys are pressed when the cursor is on the last program line, the line text is

removed but the line number remains with the cursor resting in the first column. This puts the editor in

insert mode on the last line of the program (see “Inserting Lines”). To get out of insert mode, use the

knob and move the cursor up one line.

Pressing the [Shift] [Delete] keys will not remove a subprogram line with a SUB keyword in it unless all

program lines belonging to that subprogram are deleted first.

Deleting Lines using the [DELETE LINE] softkey

The [DELETE LINE] softkey, [F4] on the keyboard, removes the current program line in the same

manner as pressing the [Shift] [Delete] keys on the keyboard.

To recall the last deleted line, press the [RECALL LINE] softkey, [F5] on the keyboard.

Developing Programs
Using the Instrument Basic editor

5-16

Using [UTILITIES]

There are some activities generally associated with editing that are located outside the [EDIT] menu,

under the [INSTRUMNT BASIC] [UTILITIES] softkey. These editing utilities are more global in nature,

rather than pertaining to single characters, words and lines as the editor does. See figure 5-8.

If using a keyboard, the [UTILITIES] menu loads into the following function keys:

[MEMORY SIZE] [F1]

[AUTO MEMORY] [F2]

[SCRATCH] [F4]

[RENUMBER] [F5]

[SECURE] [F6]

[INDENT] [F7]

[DELSUB] [F8]

[DELSUB TO END] [F9]

The [UTILITIES] menu is mostly composed of Instrument BASIC keywords that can be executed

interactively. All but [MEMORY SIZE] and [AUTO MEMORY] directly affect the contents of the

program.Two other utility softkeys are not keywords: [MEMORY SIZE] and [AUTO MEMORY]. These

utilities allow you to directly change the program’s operating space.

Developing Programs
Using [UTILITIES]

5-17

Figure 5-8. The [UTILITIES] Menu

MEMORY SIZE

Press [MEMORY SIZE] to display the amount of working space (commonly called the stack) currently

allocated for the active program. The stack contains all variables not in COM as well as context

information for functions and subprogram calls. The stack does not contain program code.

Instrument Basic allocates the size of the stack for the most efficient use of memory resources. If you use

recursive subprograms, Instrument Basic may not allocate enough memory. If the analyzer runs out of

stack space while the program is running it displays an error message, “Out of Memory” in a pop-up

message window.

To increase the amount of memory allocated for the stack, press [MEMORY SIZE]. Enter the new amount

using the numeric keys on the front panel or on the keyboard. The entry window is displayed when you

press the first numeric key. Use the [EXP] softkey to enter the size using engineering notation. After

entering the new memory size, press [ENTER]. Instrument Basic may adjust your entry to the closest

available increment of memory.

If you enter a number which exceeds the available memory, the memory size will be set to the largest

available stack size. The minimum amount allocated by Instrument Basic for the stack is 1122 bytes.

Memory available for Instrument Basic programs is dependent upon the amount of memory space

allocated for other uses. To display the usage of all of the analyzer’s memory, press the [System Utility]

hardkey then press [MEMORY USAGE]. A table displays the amount of memory allocated for all

Instrument Basic programs (code and program stacks) as well as memory allocated for other functions of

the analyzer.

AUTOMEMORY

The [AUTO MEMORY] softkey resizes stack space automatically to fit the current active program. This is

similar to the operation that occurs when a program is loaded with the [Save / Recall] menus. This is

faster than using the [MEMORY SIZE] key and works well for most programs.

In some cases, [AUTO MEMORY] may allocate more memory than the Instrument Basic program needs.

Use the [MEMORY SIZE] softkey to reduce the amount of memory allocated for your program. If you

receive an “Out of Memory” error when you try to run the program you can use the [MEMORY SIZE]

softkey to increase the memory size. Programs that use recursive functions or subprograms may need to

have memory increased manually with the [MEMORY SIZE] softkey.

If you want [AUTO MEMORY] to allocate more memory for a particular program, you can append the

following “dummy” subprogram:

.

.

100 SUB More_memory

110 DIM A(1000)

120 SUBEND

Increasing the size of array A causes more memory to be allocated.

Developing Programs
Using [UTILITIES]

5-18

SCRATCH

Pressing the [SCRATCH] softkey brings up a menu that allows you to clear the current program and/or

variables. The softkeys load into the keyboard function keys as follows:

[SCRATCH] [F1]

[SCRATCH C] [F2]

[SCRATCH A] [F3]

[PERFORM SCRATCH] [F5]

You must first select a combination of program and/or variables to clear by pressing [SCRATCH],

[SCRATCH C], or [SCRATCH A]. The scratch operation is not executed, however, until you press the

[PERFORM SCRATCH] softkey.

SCRATCH

This key selects the current active Instrument BASIC program and all variables not in COM.

SCRATCH C

This key selects all variables including those in COM, but does not clear the program.

SCRATCH A

This softkey selects the current active Instrument BASIC program and all variables, including those in

COM.

The analyzer does not clear the memory until you press [PERFORM SCRATCH]. To cancel a SCRATCH

operation, press [Rtn] at any time prior to pressing [PERFORM SCRATCH].

Developing Programs
Using [UTILITIES]

5-19

RENUMBER

Pressing [RENUMBER] displays a menu that allows you to change the line numbering for the entire active

program. The [RENUMBER] menu loads into the keyboard function keys as follows:

[START LINE #] [F1]

[INCREMENT] [F2]

[PERFORM RENUMBER] [F4]

To select the number that is assigned to the first line in the program when renumbering lines in a

program, press [START LINE #]. If you do not define the starting line number, the first line number

defaults to 10.

Press [INCREMENT] to specify the increment between the renumbered line numbers. The default is 10.

For example, if [START LINE #] is 10 and [INCREMENT] is 5, the line numbers will be 10 . . . 15 . . . 20 . . .

25 . . . and so on.

Once these parameters are defined, press [PERFORM RENUMBER] to execute the command. To cancel the

renumbering operation, press [Rtn] at any time prior to pressing [PERFORM RENUMBER].

Developing Programs
Using [UTILITIES]

5-20

SECURE

The [SECURE] menu allows you to “protect” program lines. “Protected” program lines cannot be listed to

a printer or viewed in EDIT mode. The [SECURE] softkeys load into the keyboard function keys as

follows:

[START LINE #] [F1]

[END LINE #] [F2]

[PERFORM SECURE] [F4]

To secure a block of the active program:

1. Press [START LINE #].

2. Enter the beginning line number of the program block. (The value defaults to 1.)

3. Press [END LINE #].

4. Enter the ending line number of the program block. (The value defaults to 32766.)

5. Press [PERFORM SECURE].

Since [START LINE #] value defaults to 1 and the [END LINE #] value defaults to 32766, you can secure the

entire program by pressing [PERFORM SECURE] without altering the start line and end line values.

Secured lines cannot be printed or viewed in the editor. They appear only as an asterisk following the

line number (*). Secured lines can, however, be deleted from the program using the editor. You may

leave this menu at any time by pressing [Rtn].

Caution Secured program lines cannot be unsecured. Be sure to keep an unsecured version of the

program for your own records.

Developing Programs
Using [UTILITIES]

5-21

INDENT

Pressing [INDENT] displays a menu that allows you to change the indentation for the entire active

program. The [INDENT] menu loads into the keyboard function keys as follows:

[START COLUMN #] [F1]

[INCREMENT] [F2]

[PERFORM INDENT] [F4]

Press [START COLUMN #] to specify the column in which the first character of the first statement should

appear. Press [INCREMENT] to specify the number of spaces each line should move to the right or left

when the nesting level of the program changes.

Once these parameters are defined, press [PERFORM INDENT] to execute the command. To cancel the

renumbering operation, press [Rtn] at any time prior to pressing [PERFORM INDENT].

DELSUB and DELSUB TO END

[DELSUB] and [DELSUB TO END] allow you to delete subprograms and functions from your program.

When you press [DELSUB], you are prompted to enter the name of the single subprogram or function you

want to delete. Once you have typed the name in the prompt, press [ENTER] to delete the subprogram

or function, or press [Rtn] to cancel the operation.

When you press [DELSUB TO END], you are prompted to enter the name of the first subprogram or

function you want to delete. Once you have typed the name in the prompt, press [ENTER] to delete the

subprogram or function—and all subprograms or functions that follow it—or press [Rtn] to cancel the

operation.

Developing Programs
Using [UTILITIES]

5-22

Using [PRINT PROGRAM]

The [PRINT PROGRAM] softkey allows you to print the current contents of the active program buffer to an

attached printer. However, you must first configure your printer under the [Plot/Print] hardkey. See

online help for more information about configuring your printer.

Note If you press [PRINT PROGRAM] and do not have a printer connected or properly

configured, Instrument BASIC continues attempting to print until you press either

[Local/GPIB] or [Preset].

Once the printing operation is completed, the PRINTER IS device is set to the display (CRT).

Developing Programs
Using [PRINT PROGRAM]

5-23

Using [DISPLAY SETUP]

Pressing the [BASIC] [DISPLAY SETUP] key allows you to allocate a partition of the analyzer’s display to

be used by your program. Alternately, Instrument Basic can return any allocated partition of the display

to the analyzer.

The Agilent 35670A display is divided into two small partition areas (UPPER, and LOWER) and one

large area (FULL), which encompasses both the UPPER and LOWER partition areas.

See figure 5-9.

All screen output commands, such as PRINT and DRAW, require that you allocate a partition of the

screen in order to view the results of the command. This can be performed in your program or

interactively using the [DISPLAY SETUP] softkey.

Developing Programs
Using [DISPLAY SETUP]

5-24

Figure 5-9. The Display Partitions

The [DISPLAY SETUP] menu softkeys load into the following keyboard function keys:

[OFF] [F1]

[FULL] [F2]

[UPPER] [F3]

[LOWER] [F4]

[CLEAR SCREEN] [F6]

[ALPHA ON OFF] [F7]

[GRAPHICS ON OFF] [F8]

You can allocate display partitions from within your program using the GPIB command “DISP:PROG”

and specifying the parameter UPPer, LOWer or FULL. For example the statement

OUTPUT 800;"DISP:PROG FULL"

allocates the single trace box of the display. This command corresponds to selecting [FULL] from the

[DISPLAY SETUP] menu. Table 5-1 shows the relationship between the [DISPLAY SETUP] softkeys and the

corresponding GPIB commands required to program the same functions.

Table 5-1. The Display Partitions

MENU ALLOCATES GPIB Command

OFF NO DISPLAY DISP:PROG OFF

FULL SINGLE TRACE AREA DISP:PROG FULL

UPPER UPPER TRACE AREA DISP:PROG UPP

LOWER LOWER TRACE AREA DISP:PROG LOW

Most display allocation should be handled by your program with the GPIB commands. It is best to use

these softkeys during program development.

[CLEAR SCREEN] clears all text and graphics from the active partition. [ALPHA ON OFF] enables and

disables the display of alpha output in the active partition. [GRAPHICS ON OFF] enables and disables the

display of graphics output in the active partition.

For more information about controlling the display, refer to chapter 7, “Graphics and Display

Techniques.”

Developing Programs
Using [DISPLAY SETUP]

5-25

6

Debugging Programs

6

Debugging Programs

The process of creating programs usually involves correcting errors. You can minimize these errors by

using keystroke recording for your measurement sequence program segments and by writing structured,

well-designed programs.

Of course bugs can and do appear in even the best designed programs. Instrument BASIC contains some

useful features to help you track them down.

6-1

Overview

The Instrument BASIC tools provided for program debugging are simple and, if used properly, can be

very helpful. The [INSTRUMNT BASIC] menu contains the [DEBUG] softkey. See figure 6-1.

If using a keyboard, the [DEBUG] menu loads into the function keys as follows:

[RUN] [F1]

[CONTINUE] [F2]

[SINGLE STEP] [F4]

[LAST ERROR] [F5]

[EXAMINE VARIABLE] [F6]

[RESET] [F8]

Debugging Programs
Overview

6-2

Figure 6-1. The December 7, 342 Menu

The [DEBUG] menu provides several debugging facilities. For example, using the [DEBUG] menu you

can:

RUN or CONTINUE your program normally

SINGLE STEP through your program one line at a time

Display the last error encountered in your program

Examine program variables

By examining the values assigned to variables at various places in the program, you can get a much better

idea of what is really happening in your program.

Use the [SINGLE STEP] softkey to execute the program one line at a time. You can study the program’s

operation and examine variable values.

By inserting a PAUSE statement in your program you can pause the program at any line and then

examine the values of variables at that point in the program. Press [CONTINUE] to resume operation to the

next PAUSE statement or to the end of the program. Press [SINGLE STEP] to walk through program lines

following the PAUSE statement.

By combining these different features you can examine the program’s operation and solve your particular

problem.

Debugging Programs
Overview

6-3

Using [EXAMINE VARIABLE]

Pressing [EXAMINE VARIABLE] displays an entry window that allows you to enter the name of the variable

you want to examine. The default is the name of the last examined variable. It also brings up the editor

(the alpha entry menu), so you can enter the variable name.

You must first perform a prerun operation to examine the value assigned to any variable in your program.

A prerun is executed when you press either [RUN] or [SINGLE STEP]. After the prerun, press the

[EXAMINE VARIABLE] key and enter the name of an existing variable in your program.

You can enter the variable as all uppercase letters. When you are finished entering a variable name, press

[ENTER].

If you use [SINGLE STEP] and the program has not executed the line assigning that variable, the variable

returns a value of zero.

Examining Strings

Enter string variables as you would any other variable. The entry window wraps to display a maximum

of 10 lines of 42 characters each.

To select only a section of a string, use the Instrument BASIC substring syntax (see the “ Instrument

BASIC Programming Techniques” section in the Instrument Basic Users Handbook). For example, to

examine the 7 character substring starting at the second character of A$ enter:

A$[2;7]

Examining Arrays

You can examine an entire array or individual elements of the array. For example the entry:

I_array(1),I_array(2),I_array(3)

displays the elements 1 through 3 of the array I_array.

To select an entire array for examination enter the array variable name followed by an asterisk, (*); for

example, I_array(*).

Example

I_array(20) is an integer array. The first and second elements are set to 100. After pressing

[EXAMINE VARIABLES], enter “I_array(*).” The following is displayed:

I_array(*) = 100 100 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

An individual array element (for example, I_array(17)), is specified the same as any single variable.

Debugging Programs
Using [EXAMINE VARIABLE]

6-4

Setting Breakpoints

A common method of debugging a program is the use of breakpoints. A breakpoint causes the program

to stop at a defined point so that you can examine the program state at that point. In Instrument BASIC

this is accomplished by inserting PAUSE statements in the program code. When the program runs, you

can use [EXAMINE VARIABLE] to check or change variable values. Press [CONTINUE] to continue the

program until the next PAUSE, STOP or END statement is encountered.

You can enter PAUSE statements and otherwise alter the contents of the active program by using the

[BASIC] [EDIT] softkey. See chapter 5, “Developing Programs,” for a description of the Instrument

BASIC editing capabilities in the Agilent 35670A.

Debugging Programs
Setting Breakpoints

6-5

Using [SINGLE STEP]

The [SINGLE STEP] softkey allows you to execute your program one line at a time. The line to be

executed appears in the first line of the display. See figure 6-2.

You can use [SINGLE STEP] from the beginning of the program or from any point where it has been

paused. To resume regular execution of a program after using [SINGLE STEP], press [CONTINUE].

[SINGLE STEP] can be very helpful when used in conjunction with the [EXAMINE VARIABLES] key and the

PAUSE statement. By placing a PAUSE statement at a point of interest in your program, you can run the

program until it pauses, then single step through the critical program lines, checking variables values or

program operation. To resume program execution at any time, press [CONTINUE].

Debugging Programs
Using [SINGLE STEP]

6-6

Figure 6-2. Single Step

Single Step Program Line

Using [RUN PROGRAM], [CONTINUE], and [LAST ERROR]

The [RUN PROGRAM] softkey executes a prerun sequence and then begins executing the program at the

first program line. Execution continues until the analyzer reaches a PAUSE, STOP or END statement, or

until the program is paused or stopped from the front pinanel.

The [CONTINUE] softkey allows you to resume regular program operation from a paused program or from

a program in single step mode. This is identical to the [BASIC] [CONTINUE] softkey operation.

The [LAST ERROR] softkey displays the error number and message of the last error encountered by the

program. This is the front panel equivalent to the BASIC command, ERRM$.

Using [RESET]

The [RESET] softkey allows you to bring the program environment back to its default state. This is

especially useful when you are using single step mode and you want to restart the program. Pressing

[RESET] sends an abort message to the GPIB interface, resets the program counter to the first program

line and closes all open files with one exception. Pressing [RESET] does not close a file if it is the device

for a PRINTER IS statement.

Debugging Programs
Using [RUN PROGRAM], [CONTINUE], and [LAST ERROR]

6-7

7

Graphics and Display Techniques

7

Graphics and Display Techniques

Instrument BASIC programs have the ability to allocate portions of the instrument’s display for text and

graphics. This section provides a description of the various programming techniques used to do both.

Using the Partitions

There are several Instrument BASIC commands that require a display as an output device. These include

commands such as PRINT, CLEAR SCREEN, MOVE, DRAW and GCLEAR. Since Instrument BASIC

programs share all hardware resources with the instrument, the display must be shared for instrument and

program use. All commands that output data to the screen write to a screen buffer and in order to view

this output buffer, a portion of the display must be released from the instrument. You can do this

manually when the program is not running by using the [BASIC] [DISPLAY SETUP] softkey menu.

Performing equivalent actions from within a program that is running, requires sending an GPIB message

to the instrument; both to borrow a screen partition and again to give it back.

Allocating Partitions

The instrument’s screen can be divided into two trace boxes (upper and lower). The upper and lower

trace boxes can be combined into one large trace box for single trace displays. Any of these three trace

boxes, called display partitions, can be used by an Instrument BASIC program.

There are two other non-partition areas of the screen that can be accessed by Instrument BASIC

programs. The area on the right of the screen is reserved for softkey labels and can be accessed using the

ON KEY statement. Also, a line at the top of the screen can be accessed via the DISP and INPUT

statements.

7-1

To request one of the partitions from the analyzer, send the instrument the corresponding GPIB

command. “DISP:PROG UPP” allocates the upper partition, “DISP:PROG LOW” allocates the lower

partition, and “DISP:PROG FULL” allocates the full screen partition. See figure 7-1.

The following is an example of a program segment that prints a message to the upper trace box:

30 ASSIGN @Agilent35670a TO 800
40 OUTPUT @Agilent35670a;"DISP:PROG UPPER"
50 CLEAR SCREEN
60 PRINT “This is the upper partition”

To be sure that you are writing to a partition that has not been assigned, include a WAIT statement. Or,

add an GPIB query command followed by an ENTER statement to synchronize the program with the

instrument. The previous example would look like this:

30 ASSIGN @Agilent35670a TO 800
40 OUTPUT @Agilent35670a;"DISP:PROG UPPER"
50 OUTPUT @Agilent35670a;"DISP:PROG?"
60 ENTER @Agilent35670a;Part$
70 CLEAR SCREEN
80 PRINT “This is the upper partition”

The command DISP:PROG? (line 50 above) requests the instrument to send the current partition status.

The ENTER statement on the next line reads that status and then continues.

De-Allocating Partitions

To return the display partition to the analyzer, use the “DISP:PROG OFF” command. This should be

done before the termination of any program that has allocated a display partition. It may also be required

within the program to allow someone to view instrument trace data. The following example demonstrates

this command:

830 OUTPUT @Agilent35670a;"DISP:PROG OFF"

Graphics and Display Techniques
Using the Partitions

7-2

Figure 7-1. The Display Partitions

Using Text

You can enable the display of text information by pressing [BASIC] [DISPLAY SETUP] [ALPHA ON OFF].

This information is generated primarily by the Instrument BASIC PRINT statement.

The PRINT statement works the same in every partition. Information is printed starting at the top of the

current partition and continues until the bottom of the partition is reached where the screen then scrolls up

to allow additional lines to be printed. Causing the screen to scroll does not effect any graphics displayed

on the screen, because text and graphics are written to different planes of the display.

All partitions have a width of 58 characters. The height varies according to partition. Both upper and

lower partitions each contain 14 lines. The full partition contains 29 lines.

This information is useful if you are using the “PRINT TABXY” statement to position text. For example,

the following program segment prints a message in the center of the full partition (assuming it has been

allocated earlier in the program).

.

.
100 Maxlines=29
110 PRINT TABXY(25,Maxlines/2);"CENTER"
.
.

The following program segment demonstrates a technique to get text onto the screen quickly. Write your

display message to a long string, using the OUTPUT statement, and then print the string to the screen.

This speeds up screen display time considerably.

60 DIM Temp$[100],Big$[2000]
70 OUTPUT Temp$;"This is the first line of text"
80 Big$=Big$&Temp$
90 OUTPUT Temp$;"This is the second line of text"
100 Big$=Big$&Temp$
110 PRINTER IS CRT; WIDTH 2000
120 PRINT Big$

Graphics and Display Techniques
Using Text

7-3

You can also print to the screen using the OUTPUT statement in conjunction with the display address (1).

For example, the statement

OUTPUT CRT;" OUTPUT 1 WORKS WELL TOO"

writes the quoted text to the screen.

The display responds to several of the standard ASCII “control codes.” These characters can be sent to

the CRT by printing or sending the CHR$ function of the ASCII number. For example, CHR$(7) is the

control code for the “bell” (CTRL-G) and has the effect of sounding the beeper. For more information on

control codes recognized by the CRT, see the Instrument Basic Users Handbook.

Note It is sometimes a practice to embed these control codes in your PRINT statements when

using external computers to develop programs. For example, the 9836 Series 200

Workstation allows you to enter control characters directly into the program using the

“ANY CHAR” key. If you do this, do not attempt to use the Instrument BASIC editor

on the program. This editor does not recognize embedded control codes and its actions

may be unpredictable.

Graphics and Display Techniques
Using Text

7-4

Using Graphics

You can enable the display of graphics information by pressing [BASIC] [DISPLAY SETUP]

[GRAPHICS ON OFF]. This information is generated primarily by the Instrument BASIC graphics

statements.

Graphics and Display Partitions

You can position a graphics display area anywhere within the FULL display partition using the

VIEWPORT statement. However, when you select the UPPER or LOWER partition, the analyzer shows

you only those graphics that would be displayed in the lower half of the FULL partition. You must define

a display area that falls within this lower half if you want to ensure that all graphics output is displayed

within an UPPER or LOWER partition. For example, the following program line defines a display area

that completely fills the lower half of the FULL partition:

VIEWPORT 0,RATIO*100,0,49

Note If you are converting an Instrument BASIC program written for the Agilent 35665A to

one that works for the Agilent 35670A, you can insert the following lines to make

graphics statements work properly:

GRAPHICS ON
WINDOW 0,474,0,345

Graphics Line Buffering

When lines are drawn by a graphics statement, the endpoint coordinates and pen information for each line

is normally saved in a graphics buffer in the analyzer’s memory. This allows the lines to be redrawn

automatically whenever you change the display partition. However, as the complexity of a graphic

increases, the amount of memory required for the buffer also increases. You can prevent lines from being

saved to the buffer, conserving the memory they would require, by sending the following GPIB

command: “DISP:PROG:VECT:BUFF OFF”. When you want lines to be saved again, send

“DISP:PROG:VECT:BUFF ON”.

Graphics Pens

The PEN statement determines whether other graphics statements will draw or erase lines. When you use

a nonzero pen number, graphics statements draw lines. When you use the pen number “0,” graphics

statements erase lines—or more exactly, they erase those portions of any graphic elements that lie along

the drawing path. The pen numbers used to draw a graphic on the analyzer’s screen are also used to plot

the same graphic on an external plotter. So if you use multiple pen numbers, the graphic will be drawn

properly on the monochrome screen and plotted properly on a color plotter.

Graphics and Display Techniques
Using Graphics

7-5

Example Program

The following program demonstrates many of the techniques discussed so far. Running this program

produces the “HELP” screen displayed in figure 7-2.

10 DIM A$[58],String$[2000]
20 GINIT
30 CLEAR SCREEN
40 GCLEAR
50 OUTPUT 800;"DISP:PROG FULL"
60 OUTPUT 800;"DISP:PROG?"
70 ENTER 800;P$
80 GRAPHICS ON
90 FRAME
100 MOVE 0,91
110 DRAW 100*RATIO,91
120 PRINT TABXY(28,2);"HELP"
130 OUTPUT A$;" This program demonstrates how to print"
140 String$=String$&A$
150 OUTPUT A$;" several lines of text at one time. This"
160 String$=String$&A$
170 OUTPUT A$;" method offers the fastest possible print speed."
180 String$=String$&A$
190 PRINTER IS CRT;WIDTH 2000 !prevent auto cr/lf
200 PRINT TABXY(1,4);String$
210 END

Graphics and Display Techniques
Example Program

7-6

Figure 7-2. HELP Screen Output

8

Interfacing with the GPIB

8

Interfacing with the GPIB

Introduction

This section describes the techniques necessary for programming the GPIB interface. It also describes

specific details of how this interface works and how to use it to control or interface with systems

containing various GPIB devices.

The GPIB interface is Agilent Technologies’s implementation of the IEEE-488.1 Digital Interface for

Programmable Instrumentation. The acronym GPIB stands for “Agilent Technologies Interface Bus,”

and is often referred to as the “bus.”

The GPIB Interface is both easy to use and allows great flexibility in communicating data and control

information between the Instrument BASIC program and external devices.

Instrument BASIC is essentially an GPIB instrument controller residing inside an instrument. It uses the

host instrument’s GPIB interface for external communication and an internal GPIB interface to

communicate with the host instrument. This unique arrangement presents a few differences between

Instrument BASIC’s implementation of GPIB control and the standard

Agilent 9000 Series 300 BASIC Controller. A description of the interaction of Instrument BASIC with

the host instrument and the external GPIB interface is given in the section entitled “The Instrument Basic

GPIB Model.”

8-1

Communicating with GPIB Devices

This section describes programming techniques used to transfer data to and from GPIB devices. General

bus operation is described in a later section.

GPIB Device Selectors

Since the GPIB allows the interconnection of several devices, each device must have a means of being

uniquely accessed. A device selector consists of two parts: the interface select code and the device’s

primary address. When a particular GPIB device is to be accessed, it must be identified with both its

interface select code and its bus address.

The interface select code is the first part of an GPIB device selector. Instrument BASIC programs run

inside a host instrument and communicate with it over the internal bus, which is addressed with select

code 8. Instrument BASIC programs can also communicate with external devices via the host

instrument’s GPIB interface. The external bus select code is 7.

The second part of an GPIB device selector is the device’s primary address. Each GPIB device has a

primary address which can be configured. The address can range from 0 to 30. For example, to specify

the device on the interface at select code 7 (external bus) with a primary address of 22, use device selector

= 722.

Each device’s address must be unique. The procedure for setting the address of an GPIB device is given

in the installation manual for each device. Since the host instrument is the only device on the internal

interface, its primary address on that interface is arbitrary and the instrument will respond to any primary

address with a select code equal to 8xx (e.g., 800, 811, 822, etc.).

Secondary Addressing

Many devices have operating modes which are accessed through the extended addressing capabilities

defined in the bus standard. Extended addressing provides for a second address parameter in addition to

the primary address. Examples of statements that use extended addressing are as follows:

100 ASSIGN @Device TO 72205 !22=primary, 05=secondary
110 OUTPUT @Device;Message$

200 OUTPUT 72205;Message$

150 ASSIGN @Device TO 7220529 !Additional secondary
160 !address of 29
170 OUTPUT @Device;Message$

120 OUTPUT 7220529;Message$

The range of secondary addresses is 00-31. Up to six secondary addresses may be specified—a total of

15 digits including interface select code and primary address. Refer to the device’s operating manual for

programming information associated with the extended addressing capability.

Interfacing with the GPIB
Communicating with GPIB Devices

8-2

Moving Data Through the GPIB

Data is sent from the program through the GPIB with the OUTPUT statement. Data is entered into the

program with the ENTER statement.

The following examples illustrate the use of GPIB device selectors with OUTPUT and ENTER

statements.

Examples

100 GPIB=7
110 Device_addr=22
120 Device_selector=GPIB * 100 + Device_addr
130 !
140 OUTPUT Device_selector;"SYST:ERR?"
150 ENTER Device_selector;Reading

320 ASSIGN @GPIB_device TO 702
330 OUTPUT @GPIB_device;"Data message"
340 ENTER @GPIB_device;Number

440 OUTPUT 800;"SOUR:FREQ 1 KHZ"

380 ENTER 724;Readings(*)

General Structure of the GPIB

Communications through the GPIB are made according to a precisely defined set of rules. These rules

ensure that only orderly communication takes place on the bus.

For conceptual purposes, the organization of the GPIB can be compared to that of a committee. A

committee uses “rules of order” to govern the manner in which they conduct their business. For example,

a committee may conduct their meetings using “Robert’s Rules of Order.” For the GPIB, the rules of

order are the IEEE 488.1 standard.

The GPIB System Controller is analogous to the chairman of a committee. Only one device can be

designated System Controller and it is designated before running a program. The System Controller

cannot be changed while under the control of a Instrument Basic program. However, as it is possible for

a chairman to designate an “acting chairman” for the committee, so can control be passed to another

device on the GPIB. This device is called the Active Controller. It can be any device capable of directing

GPIB activities, such as an instrument (using printing and plotting functions) or a desktop computer.

Interfacing with the GPIB
Communicating with GPIB Devices

8-3

When the System Controller is first turned on or reset, it assumes the role of Active Controller. These

responsibilities may be subsequently passed to another device while the System Controller tends to other

business. This ability to pass control allows more than one computer to be connected to the GPIB at the

same time.

In an effective committee, only one person may speak at a time. It is the responsibility of the chairman to

“recognize” which member is to speak. Usually, all committee members present are expected to listen at

all times; however, this is not always the case on the GPIB. One of the most powerful features of the bus

is the ability to selectively send data to individual (or groups of) devices. This allows fast talkers to

communicate with fast listeners without having to wait for slower listeners on the bus.

During a committee meeting, the current chairman is responsible for telling the committee which member

is to be the “talker” and which members are to be the “listeners.” Before these assignments are given, she

gets the attention of the members. The talker and listeners are designated and then the talker presents the

data. The designation process may be repeated after the talker has completed his message.

On the GPIB, the Active Controller takes similar action when a talker and the listener(s) are designated.

The attention signal line (ATN) is asserted while the talker and listener(s) are being addressed. ATN is

then cleared, signaling that those devices not addressed to listen may ignore all subsequent data messages.

Thus, the ATN line separates data from commands. Commands are accompanied with the ATN line

being true, while data messages are sent with the ATN line being false.

On the GPIB, devices are addressed to talk and addressed to listen in an orderly manner. The Active

Controller first sends a single command that causes all devices to stop listening. The talker’s address is

then sent, followed by the address(es) of the listener(s). After all listeners have been addressed, the data

is sent from the talker to the listener(s). Only device(s) addressed to listen accept any data that is sent

through the bus (until the bus is reconfigured by subsequent addressing commands).

The transfer of data, called a data message, exchanges information between devices on the GPIB. A

committee conducts business by exchanging ideas and information between the speaker and those

listening to his presentation. On the GPIB, data is transferred from the active talker to the active

listener(s) at a rate determined by the slowest active listener on the bus. This restriction on the transfer

rate is necessary to ensure that no data is lost by any device addressed to listen. The handshake used to

transfer each data byte ensures that all data output by the talker is received by all active listeners.

Interfacing with the GPIB
Communicating with GPIB Devices

8-4

Examples of Bus Sequences

With Instrument BASIC, all data transfers through the GPIB involve a talker and onlyone listener.

The following example illustrates the sequence of commands which are generated by the Active

Controller to send data to an GPIB device through the bus with a simple OUTPUT statement.

OUTPUT 701;"DATA"

1. The unlisten command is sent.

2. The talker’s address, which is also a command, is sent. In this case, the address of the active

controller.

3. The listener’s address (01), which is also a command, is sent.

4. The data bytes “D”, “A”, “T”, “A”, CR, and LF are sent; all bytes are sent using the GPIB’s

interlocking handshake to ensure that the listener has received each byte.

Similarly, all ENTER statements involve transferring data from a talker to only one listener. For instance,

the following ENTER statement invokes the following sequence of commands and data-transfer

operations.

ENTER 722;Voltage

1. The unlisten command is sent.

2. The talker’s address (22), which is a command, is sent.

3. The listener’s address, also a command, is sent. In this case, the listener’s address is the active

controller’s address.

4. The data is sent by device 22 to the controller using the GPIB handshake.

Interfacing with the GPIB
Communicating with GPIB Devices

8-5

General Bus Management

The GPIB standard provides several mechanisms that allow managing the bus and the devices on the bus.

The following is a summary of the statements that invoke these control mechanisms.

ABORT is used to abruptly terminate all bus activity and reset all devices to their power-on states.

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.

LOCAL is used to return all (or selected) devices to local (front panel) control.

LOCAL LOCKOUT is used to disable all devices’ front panel controls.

REMOTE is used to put all (or selected) devices into their device-dependent, remote modes.

SPOLL is used to perform a serial poll of the specified device which must be capable of responding.

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These statements (and functions) are described in the following sections. However, the actions that a

device takes upon receiving each of the above statements are generally different for each device. For

external devices, refer to the particular device’s documentation to determine how it responds.

All of the bus management statements, with the exception of ABORT, require that the Instrument

BASIC program be the Active Controller on the interface. A running program is always the Active

Controller on the internal interface (select code 8). For the program to be the active controller on the

external interface (select code 7), the host instrument must either be set as the System Controller or have

control passed to it from the external controller. The program automatically assumes the controller status

of the host instrument. For additional information refer to “The Instrument Basic GPIB Model” section

later in this chapter.

Interfacing with the GPIB
General Bus Management

8-6

REMOTE

External Devices

Most GPIB devices can be controlled either from the front panel or from the bus. The device is in the

“Local” state if the front panel controls are currently functional. If the device is controlled through the

GPIB, it is in the Remote state. Pressing the [Local/GPIB] key returns the device to Local (front panel)

control; unless the device is in the “Local Lockout” state, or the device is the host instrument.

The Remote message is automatically sent to all devices whenever the System Controller is powered on,

is reset, or sends the Abort message. A device enters the Remote state automatically whenever it is

addressed. The REMOTE statement also sends the Remote message. This causes all (or specified)

devices on the bus to change from local control to remote control. The host instrument must be set to

System Controller before an Instrument BASIC program can execute the REMOTE statement on select

code 7 (the external bus).

Examples

REMOTE 7

ASSIGN @Device TO 700
REMOTE @Device

REMOTE 700

Host Instrument

The REMOTE statement has no effect on the host instrument because it is always in remote control

whenever an Instrument BASIC program is running. Specifying the internal interface in a REMOTE

statement has no effect and does not generate an error.

Interfacing with the GPIB
General Bus Management

8-7

LOCAL LOCKOUT

External Devices

The Local Lockout message effectively locks out the “local” switch present on most GPIB device front

panels. This prevents anyone from interfering with the device’s system operations by pressing buttons.

Local lockout maintains system integrity. As long as Local Lockout is in effect, no bus device can be

returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This message is

sent to all devices on the external interface.

Examples

ASSIGN @GPIB TO 7
LOCAL LOCKOUT @GPIB

LOCAL LOCKOUT 7

The Local Lockout message is cleared when the Local message is sent by executing the LOCAL

statement. Executing the ABORT statement does not cancel the Local Lockout message.

Host Instrument

The Local Lockout message is not supported for the host instrument because some front panel

functionality is always necessary in order to pause or to abort the program. Specifying the internal

interface in a LOCAL LOCKOUT statement does not generate an error and has no effect.

Interfacing with the GPIB
General Bus Management

8-8

LOCAL

External Devices

It is good systems practice to return all devices to local control upon conclusion of remote-control

operations. For example, an operator might need to troubleshoot or to work from the front panel to make

special tests. Executing the LOCAL statement returns the specified devices to local (front panel) control.

If primary addressing is specified, the Go-to-Local message is sent only to the specified device.

However, if the interface select code alone is specified (LOCAL 7), the Local message is sent to all

devices on the external interface. Any previous Local Lockout message which is still in effect is

automatically cleared.

Examples

ASSIGN @GPIB TO 7
LOCAL @GPIB

ASSIGN @Device TO 700
LOCAL @Device

Host Instrument

The LOCAL statement has no effect on the host instrument because it is always in remote control

whenever an Instrument BASIC program is running. Specifying the internal interface in a LOCAL

statement does not generate an error.

Interfacing with the GPIB
General Bus Management

8-9

TRIGGER

External GPIB Devices

The TRIGGER statement sends a Group Execute Trigger (GET) message to a selected device or group of

devices. The purpose of the GET message is to initiate some device-dependent action; for example, it can

be used to trigger a digital voltmeter to perform its measurement cycle. The response of a device to a

GET message is strictly device-dependent. Neither the GET message nor the interface indicates what

action is initiated by the device.

Examples

ASSIGN @GPIB TO 7
TRIGGER @GPIB

ASSIGN @Device TO 707
TRIGGER @Device

Specifying only the interface select code sends a GET message to all devices currently addressed to listen

on the bus. Specifying a device’s primary address in the statement triggers only the device addressed by

the statement.

Host Instrument

The TRIGGER statement is fully compatible on the internal GPIB interface. The Agilent 35670A must

be set to trigger on the GPIB for this statement to be effective.

OUTPUT @Agilent35670a;"TRIG:SOUR BUS"
TRIGGER @Agilent35670a

CLEAR

External GPIB Devices

The CLEAR statement provides a means of “initializing” a device to its predefined, device-dependent

state. When the CLEAR statement is executed, the Clear message is sent either to all devices or to the

specified device, depending on the information contained within the device selector. If only the interface

select code is specified, all devices on the specified GPIB interface are cleared. If primary-address

information is specified, the Clear message is sent only to the specified device. Only the Active

Controller can send the Clear message.

Examples

ASSIGN @GPIB TO 7
CLEAR @GPIB

ASSIGN @Device TO 700
CLEAR @Device

Host Instrument

The CLEAR statement is fully compatible on the internal interface.

Interfacing with the GPIB
General Bus Management

8-10

ABORT

External Devices

This statement terminates all activity on the external bus and returns all of the devices on the GPIB to a

reset (or power-on) condition. Whether this affects other modes of the device depends on the device

itself. The Instrument BASIC program must be the Active Controller or the System Controller to

perform this function. If it is the System Controller and has passed active control to another device,

executing this statement returns active control to the program. Only the interface select code is specified;

primary-addressing information (such as 724) is not included.

Examples

ASSIGN @GPIB TO 7
ABORT @GPIB

ABORT 7

Aborting the Internal Bus

ABORT is not supported for the internal bus, select code 8. Executing ABORT 8 does not generate an

error.

GPIB Service Requests

Most GPIB devices, such as voltmeters, frequency counters, and spectrum analyzers, are capable of

generating a “service request” when they require the Active Controller to take action. Service requests

are generally made after the device has completed a task (such as making a measurement) or when an

error condition exists (such as a printer being out of paper). The documentation, operating or

programming manuals, for each device describes the device’s capability to request service and the

conditions in which the device requests service.

To request service, the device sends a Service Request message (SRQ) to the Active Controller. The

mechanism by which the Active Controller detects these requests is the SRQ interrupt. Interrupts allow

an efficient use of system resources, because the system executes a program until interrupted by an

event’s occurrence. If enabled, the external event initiates a program branch to a routine which “services”

the event and executes remedial action.

Interfacing with the GPIB
General Bus Management

8-11

Setting Up and Enabling SRQ Interrupts

In order for an GPIB device to initiate a service routine in the Active Controller, two prerequisites must

be met:

1. The SRQ interrupt event must have a defined service routine.

2. The SRQ interrupt must be enabled to initiate the branch to the service routine.

The following program segment shows an example of setting up and enabling an SRQ interrupt.

100 GPIB=7
110 ON INTR GPIB GOSUB Service_routine
120 !
130 Mask=2
140 ENABLE INTR GPIB;Mask

Since Instrument BASIC recognizes only SRQ interrupts, the value assigned to the mask is meaningless.

However, a mask value may be present as a placeholder for compatibility with Agilent 9000 Series 300

BASIC programs.

When an SRQ interrupt is generated by any device on the bus, the program branches to the service routine

when it exits the current line — either when the execution of the line is completed or when the line calls a

user-defined function. The service routine must perform the following operations:

1. Determine which device is requesting service (parallel poll).

2. Determine what action is requested (serial poll).

3. Clear the SRQ line.

4. Perform the requested action.

5. Re-enable interrupts.

6. Return to the former task (if applicable).

Note The ON INTR statement must always precede the ENABLE INTR statement when the

two are used in the same program.

Interfacing with the GPIB
General Bus Management

8-12

Servicing SRQ Interrupts

The SRQ is a level-sensitive interrupt; in other words, the interrupt may not be immediately detected

when the SRQ line goes low. This implies that an interrupt may not be generated if the SRQ is present

momentarily but does not remain long enough to be sensed by the controller. The level-sensitive nature

of the SRQ line also has implications, which are described in the following example.

Example of a SRQ Interrupt

Assume only one device is currently on the bus. The following service routine first serially polls the

device requesting service, thereby clearing the interrupt request. In this case, the controller did not have

to determine which device was requesting service because only one device is on the bus. Also, the type

of interrupt is not determined because only service request interrupts are enabled in Instrument BASIC.

The service is then performed, and the SRQ event is re-enabled to generate subsequent interrupts.

500 Serv_rtn: Ser_poll=SPOLL(@Device)
510 ENTER @Device;Value
520 PRINT Value
530 ENABLE INTR 7
540 RETURN

The IEEE standard specifies that when an interrupting device is serially polled, it is to stop interrupting

until a new condition arises (or the same condition arises again). In order to “clear” the SRQ line, it is

necessary to perform a serial poll on the device. This poll is an acknowledgement from the controller to

the device that it has seen the request for service and is responding. The device then removes its request

for service by releasing the SRQ line. When the SRQ line is released, the line goes high.

If the SRQ line had not been released, the controller would have immediately branched to the service

routine after enabling interrupts on the external interface (line 530). This is another implication of the

level-sensitive nature of the SRQ interrupt.

Once an interrupt is sensed and logged, the interface cannot generate another interrupt until after the

initial interrupt is serviced. The controller disables all subsequent interrupts from an interface until a

pending interrupt is serviced. For this reason, it is necessary to allow for subsequent branching.

Interfacing with the GPIB
General Bus Management

8-13

Conducting a Serial Poll

A sequential poll of individual devices on the bus in known as a Serial Poll. The status of a specific

device is returned in response to a Serial Poll. One entire byte is used. This is called the “Status Byte”

message. Depending on the device, the Status Byte may indicate an overload condition, a request for

service, or a printer which is out of paper. The particular response of each device depends on the device.

The SPOLL function performs a Serial Poll of the specified device. The Instrument Basic program must

be the Active Controller in order to execute it.

Examples

ASSIGN @Device TO 700
Status_byte=SPOLL(@Device)

Spoll_724=SPOLL(724)

The Serial Poll is meaningless for the external bus since it must poll the individual devices on the bus.

Therefore, primary addressing must be used with the SPOLL function.

Passing and Regaining Control

Passing control can be accomplished in one of two ways: it can be handled by the system, or it can be

handled by the program. To handle it programmatically, use the PASS CONTROL statement.

Instrument Basic or the analyzer can control the external bus (select code 7). The following statements

first define the GPIB’s select code, specify the new Active Controller’s primary address and then pass

control to that controller.

100 Agilent_ib=7
110 New_ac_addr=20
120 PASS CONTROL 100*Agilent_ib+New_ac_addr

Once the new Active Controller has accepted active control, the controller which passed control assumes

the role of a non-Active Controller on the GPIB.

Note An Instrument BASIC program cannot act as a device when in the role of non-Active

controller.

Active control of the internal GPIB bus (select code 8) cannot be passed. The statement “PASS

CONTROL 800” passes control of the external bus to the instrument. This is required whenever the

analyzer performs a plot operation to a peripheral on the bus or the analyzer accesses an external disk

drive. These concepts are discussed next in “The Instrument Basic GPIB Model.”

Interfacing with the GPIB
General Bus Management

8-14

The Instrument BASIC GPIB Model

The fact that Instrument BASIC resides in, and co-exists with an instrument creates a large set of

possible interactions, both internally within the instrument as well as externally with other controllers and

instruments. This section defines the principal players and rules of order when Instrument BASIC

executes within the host instrument.

External and Internal Busses

There is physically only one GPIB port and one GPIB address for the Agilent 35670A. Instrument

BASIC has access to two GPIB ports: the “real” external port (select code 7) and a “virtual” internal port

(select code 8), through which it communicates with the Agilent 35670A. See figure 8-1.

Interfacing with the GPIB

The Instrument BASIC GPIB Model

8-15

Figure 8-1. Agilent 35670A External and Internal Port

Service Request Indicators

An external controller may perform a serial poll (SPOLL) at any time without affecting a running

Instrument BASIC program. There are two Service Request Indicators (SRI) – one for the external port

and one for the internal port. The internal SRI can only be cleared by an Instrument BASIC program

performing an SPOLL on device 800. The external SRI can only be cleared by an SPOLL from an

external controller and can only be set when there is no active Instrument BASIC program.

The two SRI’s are set to their OR’d value when a program starts, and again when it finishes. This assures

that any pending SRQ’s can be serviced by the instrument’s new controller.

The pausing or termination of a program causes the PROGRAM_RUNNING bit in the Operation Status

register to go low. This can be used to generate an external SRQ. (For an example, see the example

program, TWO_CTLR, in chapter 11.)

Interfacing with the GPIB
The Instrument BASIC GPIB Model

8-16

Status Registers

The Agilent 35670A’s status registers contain information about various analyzer conditions. There are

eight register sets. Their reporting structure is summarized in figure 8-2.

For more detailed information about the analyzer’s register sets, refer to GPIB Programming with the

Agilent 35670A.

Interfacing with the GPIB
The Instrument BASIC GPIB Model

8-17

Figure 8-2. Agilent 35670A Status Registers

Instrument BASIC as the Active Controller

The Instrument BASIC program is always the Active Controller on the internal bus (select code 8).

When a program starts running, the GPIB controller status of the instrument is automatically passed to the

program. See figure 8-3. For example, if the instrument is set as System Controller, a program running

in the instrument automatically becomes the System Controller and the Active Controller on the external

bus and the instrument relinquishes active control. When the program stops, the instrument regains active

control.

Similarly, if an instrument set as Addressable Only is passed control from an external controller, any

Instrument Basic program running in the instrument becomes active controller on the external interface.

There are two cases when a program running in an instrument can become the Active Controller on the

external interface:

When the host instrument is set as System Controller and the program has not passed control.

When the host instrument is set as Addressable Only and the instrument has been passed control from

an external controller.

Interfacing with the GPIB

The Instrument BASIC GPIB Model

8-18

Figure 8-3. The Program as Active Controller
on the External Interface

Passing Active Control to the Instrument

The only way that the Agilent 35670A can gain active control of the external interface while an

Instrument Basic program is running is if the program is currently the Active Controller on select code 7

and passes control to the instrument. Normally, the active controller on the external bus can pass control

to any device on the interface by using the statement

PASS CONTROL 7xx

where “xx” represents the primary address of the device on the bus. However, since an Instrument

BASIC program does not interface with the host instrument via select code 7, a different method must be

used to pass control. To pass active control of the external interface from an Instrument BASIC program

to the host instrument, use the statement:

PASS CONTROL 8xx

where “xx” represents any two digit number from 00 to 99. This allows the instrument to control external

plotters, printers and disk drives. See figure 8-4. When the instrument is finished with its GPIB control

activity, it automatically passes control back to the program. If the instrument is waiting for control and

the Instrument Basic program terminates, control is implicitly passed back to the instrument. See figure

8-5.

Interfacing with the GPIB

The Instrument BASIC GPIB Model

8-19

Figure 8-4. Passing Control of the External Interface
to the Agilent 35670A

Note Control of the internal bus is used to govern access to the external bus. When the

instrument is given control of the internal bus, it actually gains access to the external

GPIB hardware.

Interfacing with the GPIB

The Instrument BASIC GPIB Model

8-20

Figure 8-5. Control Passed Back to Program
When Instrument Is Done

Instrument BASIC as a Non-Active Controller

Instrument BASIC programs are always the Active Controller on the internal interface. There are two

cases when an Instrument BASIC program does not have control of the external GPIB interface:

When the host instrument is set as Addressable Only and active control has not been passed from an

external device.

When the host instrument is set as System Controller and the program has passed control to either the

host instrument or to another device on the external interface.

In both of these cases, the Instrument Basic program cannot perform activities of any kind on the external

bus. See figure 8-6.

Note An Instrument BASIC program cannot act as a device on the external bus. To

communicate with an external controller, the Instrument BASIC program must be

Active Controller and the external controller must act as the device (see “Interfacing

with an External Controller”).

Interfacing with the GPIB

The Instrument BASIC GPIB Model

8-21

Figure 8-6. The Program as Non-Active Controller

Interfacing with an External Controller

So far, we have limited our discussion to the ability to interface Instrument BASIC programs via GPIB

with a network of external devices. It is possible to include a computer in the network, and to interface an

Instrument BASIC program with another program running in that computer.

External controller programs can interface with Instrument BASIC programs (hereafter referred to as

“internal programs”) over GPIB in two ways:

The two programs can pass data back and forth using simple OUTPUT and ENTER statements. This

requires coordination of both the internal and external programs and also requires that the internal

program be the Active Controller during the interaction. To get an internal program and an external

program to work together successfully, you should have a good understanding of the GPIB model, as

presented earlier in this chapter.

The external program can make use of the extensive set of Agilent 35670A GPIB commands that

interface with Instrument BASIC programs. These commands fall under the subsystems PROGram and

MMEMory, and allow the external controller to remotely perform many of the Instrument BASIC front

panel activities. This includes the ability to run, stop, pause, continue, get, save or delete an internal

program. Commands in the SYSTem:COMMunicate:SERial subsystem configure the RS-232-C port.

You can also remotely set a program’s memory size and query or set the values of numeric and string

variables.

Commands that allow you to transfer programs and program data to and from the instrument are included

in the Agilent 35670A GPIB command set. Programs can be transferred (uploaded and downloaded)

between an external controller and the program buffer in the instrument. Data can be transferred between

an external program and a non-running internal program by setting and querying internal program

variables. These commands are described in detail in GPIB Programming with the Agilent 35670A.

Interfacing with the GPIB
Interfacing with an External Controller

8-22

Transferring Data Between Programs

Using OUTPUT and ENTER Statements

All data sent from an external controller to the instrument’s external port is received by the instrument —

not by any program running in it. Therefore, an Instrument BASIC program that is not the Active

Controller cannot enter or output data via the external interface bus. In order to pass data between an

external controller and an internal program using OUTPUT and ENTER statements, the internal program

must be given active control and the external controller must become the non-Active Controller. All

Agilent 9000 Series 300 BASIC controllers have the ability to enter and output data via GPIB while

acting as a non-Active Controller.

Note Moving data through the GPIB and running a measurement in the host instrument at the

same time can slow both operations significantly. It is recommended that you do not

perform these operations concurrently.

One method of passing data between the two controllers is to first set the instrument as Addressable Only.

Next, run an Agilent 9000 Series 300 BASIC program that starts the Instrument BASIC program and

then passes control to it. Thereafter, the Instrument BASIC program can output data to, and enter data

from, the external controller. The following two programs, found on the Agilent 35670A Example

Programs disk, demonstrate how to transfer data between an internal program and an external controller

program.

The first program, DTXFRB, runs on an Agilent 9000 Series 300 workstation. It assumes that a disk

containing the corresponding Instrument BASIC program DTXFRA is in the Agilent 35670A disk drive.

It remotely loads the Instrument BASIC program, starts it and then transfers active control to it. The

Instrument BASIC program DTXFRA, with active control of the interface, queries the external program

for the name of the drive to catalog, and then sends the cataloged string to the external program and

passes back active control. After receiving the catalog data, the external program goes into a loop (line

460). This command continues to generate an error until control is passed back to the host computer,

which again becomes the active controller.

Interfacing with the GPIB
Interfacing with an External Controller

8-23

10 !BASIC program: DTXFRB — Data transfer BASIC to BASIC
20 !——————————————————————————————————-
30 ! This program demonstrates how to transfer data from an Instrument
40 ! BASIC program. This program, which runs on the computer, loads a
50 ! a program into the Agilent35670A, runs it, and then gives it control of
60 ! the bus. This program then acts as a device on the bus; sending and
70 ! receiving data. Before running this program, a disc with the program
80 ! ‘DTXFRA’ should be in the Agilent35670A’s internal drive.
90 ! The Agilent35670A should be at GPIB address 11 and the controller should
100 ! be at address 21.
110 !——————————————————————————————————-
120 Scode=7 !Select code for interface
130 Address=11 !Address for Agilent35670A
140 Agilent35670a=Scode*100+Address
150 CLEAR Agilent35670a
160 OUTPUT Agilent35670a;"*CLS" !Clear the EVENT registers
170 CLEAR SCREEN !Clear the display
180 !
190 DIM Directory$(1:100)[85] !Array to hold catalog listing
200 !
210 INPUT “Insert ‘DTXFRA’ disk into the Agilent35670A. Press <ENTER>”,A$
220 DISP “Loading program on Agilent35670A...”
230 OUTPUT Agilent35670a;"MMEM:LOAD:PROG ‘INT:DTXFRA’" !Load program from disk
240 OUTPUT Agilent35670a;"*OPC?"
250 ENTER Agilent35670a;Opc !Wait here until program loaded
260 OUTPUT Agilent35670a;"*ESR?" !Read the EVENT STATUS reg
270 ENTER Agilent35670a;Esr
280 IF Esr>0 THEN !Have any errors occurred
290 BEEP
300 DISP “Error while loading ‘DTXFRA’...Cannot continue program.”
310 STOP
320 END IF
330 !
340 OUTPUT Agilent35670a;"*PCB 21" !Set pass control back address
350 ! to GPIB address for controller
360 DISP “Running the program...”
370 OUTPUT Agilent35670a;"PROG:STAT RUN"!Start the program
380 PASS CONTROL Agilent35670a !Give program control of bus
390 !
400 OUTPUT Scode;":INTERNAL" !Wait until addressed to talk
410 DISP “Reading data...”
420 ENTER Scode;Directory$(*) !Wait until addressed to listen
430 !
440 FOR I=1 TO 100 !Print the catalog
450 IF LEN(Directory$(I))>0 THEN PRINT Directory$(I)
460 NEXT I
470 !
480 Here: ON ERROR GOTO Here!Loop until control passed back
490 LOCAL Agilent35670a
500 DISP “”
510 END

Interfacing with the GPIB
Interfacing with an External Controller

8-24

10 ! BASIC program: DTXFRA — Data transfer BASIC to BASIC
20 !———————————————————————————————————-
30 ! This program demonstrates how to transfer data to and from an
40 ! external controller. In this example a catalog listing is transferred
50 ! from the Agilent35670A to the external controller. For more information
60 ! look at the program listing for ‘DTXFRB’
70 !
80 ! This program is intended to be executed with Instrument Basic.
90 !———————————————————————————————————-
100 DIM Directory$(1:100)[85] !Create string array for catalog
110 !
120 Host=721 !Address for external controller
130 !
140 ON ERROR GOTO 150 !Loop until control is passed to the Agilent35670A
150 ENTER Host;Stor_dev$!Address Host to talk, read device to catalog
160 OFF ERROR
170 !
180 DISP “Reading catalog...”
190 CAT Stor_dev$ TO Directory$(*)!Catalog into the string array
200 !
210 DISP “Transferring data...”
220 OUTPUT Host;Directory$(*) !Address Host to listen, write array
230 !
240 PASS CONTROL Host !Pass control back to host
250 DISP “DONE”
260 END

Interfacing with the GPIB
Interfacing with an External Controller

8-25

Setting and Querying Variables

Another means of transferring data between an internal and an external program involves the ability to set

and query internal program variables from an external program. The “PROGram:NUMBer” and

“PROGram:STRing” statements (and their query counterparts) are part of the Agilent 35670A GPIB

commands. The internal program must not be running when these commands are executed.

The command

PROG:NUMBer <“label”>,<numeric value>

sets the value of a numeric variable in the program. The command

PROG:STRing <“label$”>,<“string value”>

sets the value of a string variable in the program. In both the PROG:NUMB and PROG:STR commands

and queries, the label must be a string in quotes. In the PROG:STRing command, the string variable data

must also be in quotes.

Numeric and string parameters can also be queried. The query

PROG:NUMBer? <“label”>

returns the value of the specified INTEGER or REAL variable. If you precede this GPIB command with

the FORMat ASCII command (for example, OUTPUT 719;"FORM ASCii,5") the number returns as a

readable ASCII number.

The query

PROG:STRing? <“label$”>

returns the value of the specified string variable.

Arrays of REAL or INTEGER types may be sent or queried, but arrays of strings are not allowed. Array

elements are separated by commas.

Examples

OUTPUT 711;"PROG:NUMB ‘Test’,99"

OUTPUT @Ibasic;"PROG:STRING ‘A$’,’String Data’"

OUTPUT 711;"PROG:NUMB? ‘Iarray(*)’"

Interfacing with the GPIB
Interfacing with an External Controller

8-26

The following program segment sends both numeric and a string variable queries and enters the resulting

data:

10 ASSIGN @Prog TO 711
20 OUTPUT @Prog;"FORM ASCII,3"
30 OUTPUT @Prog;"PROG:NUMB? ‘Test’"
40 ENTER @Prog; Testval
50 PRINT “The value of the variable Test = ”;Testval
60 OUTPUT @Prog;"PROG:STR? ‘A$’"
70 ENTER @Prog; Str$
80 PRINT “A$ = ”;Str$
90 END

Downloading and Uploading Programs

Programs can be transferred between an external controller and program memory using the GPIB

download command “PROG:DEFine” and its converse upload query “PROG:DEFine?.” Programs that

use these commands are executed in the external controller.

Downloading

Program data transferred (downloaded) from the external controller to the instrument is always

transferred as an “arbitrary block.” The arbitrary block may be a definite length block or an indefinite

length block. The indefinite length block is by far the easiest to transfer. It is simply a block of data that

begins with the characters “#0” preceding the first line and ends with a line-feed character accompanied

by an EOI signal on the GPIB interface.

When using the GPIB command “PROG:DEF” to download program lines, the “#0” should not be

followed by a line-feed. Each program line then requires a line number at its beginning and a line-feed at

its end. To end the arbitrary block of program lines, a single line-feed must be output with the OUTPUT

END parameter, which sends the EOI (End or Identify) signal on the GPIB control lines.

Interfacing with the GPIB
Interfacing with an External Controller

8-27

The following program runs on an external Agilent 9000 Series 300 workstation. It demonstrates

downloading a short program into the program buffer of the instrument. It is included in the Agilent

35670A Example Programs disk. The file must be an ASCII file.

10 ! ——————————————————————————————-
20 ! BASIC Program: DOWNLOAD670
30 ! This program downloads a file into an Agilent 35670A Instrument
40 ! BASIC program from an external controller.
50 ! The downloaded program must be an Agilent BASIC ASCII type file.
60 ! It will NOT work with DOS or HP-UX (untyped) files.
70 ! ——————————————————————————————-
80 !
90 DIM Load_file$[20],Prog_line$[256],Command$[80],Name$[10]
100 DIM Diskname$[20],Answer$[2]
110 ASSIGN @Agilent35670a TO 711
120 !
130 ! The file of program to download must be an ASCII file.
140 !
150 INPUT “ENTER NAME OF FILE TO DOWNLOAD: ”,Load_file$
160 ASSIGN @File TO Load_file$
170 INPUT “WHAT PROGRAM [1..5] DO YOU WANT TO DOWNLOAD TO?”,Prognumber
180 OUTPUT @Agilent35670a;"PROG:NAME PROG"&VAL$(Prognumber)
190 OUTPUT @Agilent35670a;"PROG:DEL"
200 ON ERROR GOTO End_load
210 OUTPUT @Agilent35670a;"PROG:DEF #0";
220 LOOP
230 ENTER @File;Prog_line$
240 PRINT Prog_line$
250 OUTPUT @Agilent35670a;Prog_line$
260 END LOOP
270 !
280 End_load: !
290 OUTPUT @Agilent35670a;CHR$(10) END
300 INPUT “SAVE PROGRAM TO INSTRUMENT’S DEFAULT DRIVE? [Y/N]”,Answer$
310 IF UPC$(Answer$)="Y" THEN
320 INPUT “ENTER NAME FOR DISK FILE: ”,Diskname$
330 OUTPUT @Agilent35670a;"MMEM:STORE:PROGRAM ‘"&Diskname$&"’"
340 END IF
350 END

The OUTPUT statement on line 210 is terminated with a semicolon to suppress the line-feed that would

otherwise occur.

As each line of the program is downloaded it is checked for syntax. If an error is found, the error

message is displayed in a pop-up message window and the line is commented and checked for syntax

again. If it still causes an error (for example the line may be too long) the line is discarded.

Any lines that currently exist in the memory buffer remain unless they are overwritten by downloaded

program lines. This makes it easy to edit lines in an external controller and then download only the edited

lines into an existing program. If you want to completely overwrite the current program in memory, you

must delete the program first. This can be done remotely using the “PROG:DEL” command.

Interfacing with the GPIB
Interfacing with an External Controller

8-28

Uploading

The command “PROG:DEF?” is used to upload a program from the program buffer. The entire program

is then returned as an definite length arbitrary block. A definite length block starts with the “ #” character

followed by a single digit defining the number of following digits to read as the block length. The

following program demonstrates an uploading routine executed on an external controller. It is included in

the Agilent 35670A Example Programs disk.

10 ! Agilent BASIC example program : UPLOAD670
20 ! —————————————————————————————-
30 ! This program runs on an BASIC workstation connected to
40 ! the Agilent 35670A with Instrument Basic installed. The 35670A
50 ! must have its address set to 711 and must be set up as
60 ! ADDRESSABLE ONLY on the GPIB. This program uploads the
70 ! current program in the Agilent 35670A’s memory to an ASCII file
80 ! on the workstation’s current MSI disk.
90 ! —————————————————————————————-
100 ASSIGN @Agilent35670a TO 711
110 DIM Prog_line$[256]
120 INPUT “ENTER FILE NAME TO UPLOAD PROGRAM INTO: ”,Filename$
130 PRINT Filename$
140 CLEAR @Agilent35670a
150 OUTPUT @Agilent35670a;"PROG:DEF?"
160 ENTER @Agilent35670a USING “#,A,D”;Prog_line$,Ndigits
170 ENTER @Agilent35670a USING “#,”&VAL$(Ndigits)&"D";Nbytes
180 PRINT Nbytes
190 Openfile(@File,Filename$,Nbytes)
200 ASSIGN @File TO Filename$
210 LOOP
220 ENTER @Agilent35670a;Prog_line$
230 EXIT IF LEN(Prog_line$)=0
240 PRINT Prog_line$
250 OUTPUT @File;Prog_line$
260 END LOOP
270 ASSIGN @File TO *
280 END
290 !
300 SUB Openfile(@File,Filename$,Fisize)
310 ON ERROR GOTO Openerr
320 IF Fisize MOD 256>0 THEN Fisize=Fisize+256
330 CREATE ASCII Filename$,Fisize DIV 256
340 Openerr: !
350 IF ERRN<>54 THEN
360 PRINT ERRM$
370 END IF
380 SUBEND

The subroutine, Openfile, (lines 300 through 330) creates a LIF file in which to save the uploaded

program. The number of 256 byte records declared in the CREATE ASCII statement (line 330) is simply

the file size (declared in the definite block header) divided by 256. Line 320 accommodates any

remainder in this calculation by increasing the file size number by one record if any remainder exists.

Interfacing with the GPIB
Interfacing with an External Controller

8-29

Although this simple method works for many uploaded programs, there may still be a problem with the

file size caused by the OUTPUT statement in line 250. This is because every ASCII line in a LIF file

contains a two byte length header and possibly one additional pad byte to make the length an even

number of bytes. These extra bytes are not included in the definite length block header information. You

can account for this extra overhead by allocating an extra 10 to 15 percent of space when you create the

ASCII file. For example, the Openfile subroutine could be rewritten as:

300 SUB Openfile(@File,Filename$,Fisize)
310 ON ERROR GOTO Openerr
315 Fisize = Fisize + (Fisize * .15)
320 IF Fisize MOD 256>0 THEN Fisize=Fisize+256
330 CREATE ASCII Filename$,Fisize DIV 256

Interfacing with the GPIB
Interfacing with an External Controller

8-30

9

Interfacing with the RS-232-C Serial Port

9

Interfacing with the RS-232-C Serial Port

Introduction

This chapter describes the RS-232-C serial port, which is located on the analyzer’s rear panel. It explains

how you can configure the port and use it to communicate with external devices. There are examples

throughout the chapter illustrating the use of this interface.

9-1

RS-232-C Serial Interface

The RS-232-C interface is used for simple asynchronous I/O applications such as driving printers,

plotters, terminals and other peripherals or computers. It converts 8-bit parallel data into bit-serial data

when it is transmitting. It converts bit-serial data back into parallel data when it is receiving.

You should first determine that the peripheral device and the analyzer are compatible. You can then

configure the analyzer’s serial interface—via front-panel softkeys or GPIB commands. The softkeys are

located in the [Plot/Print] [MORE SETUP] [SERIAL SETUP] menu. The GPIB commands are located in the

SYSTem:COMMunicate:SERial subsystem. You can specify speed, handshaking (flow control), parity,

character length and the number of stop bits.

As shown it figure 9-1, both the analyzer and the Instrument BASIC program can use the RS-232-C

serial port. The analyzer gains access to the port when you press [Plot/Print] [PLOT/PRNT DESTINATN]
[OUTPUT TO SERIAL] or when you send the HCOP:DEST SER command via GPIB. The program gains

access to the port with select code 9. You cannot change the port’s select code.

Caution If a real-time measurement is running, the RS-232-C port may lose incoming data. It is

recommended that you pause a measurement while the port is receiving data.

9-2

Figure 9-1. Agilent 35670A External RS-232-C Port

Asynchronous Data Communication

The terms Asynchronous Data Communication and Serial I/O refer to a technique of transferring

information between two communicating devices by means of bit-serial data transmission. The data is

sent, one bit at a time, and the characters are not synchronized with preceding or subsequent data

characters. Each character is sent as a complete entity. Characters may be sent in close succession, or

they may be sent sporadically as data becomes available. Start and stop bits are used to identify the

beginning and end of each character, with the character data placed between them.

Asynchronous Transmission

The Agilent 35670A supports the asynchronous protocol. Asynchronous data communication is used in

applications where high data integrity is not mandatory. Data is transmitted one character at a time. A

start bit and one or more stop bits enclose the data character. Each character is individually synchronized

or timed. The start and stop bits provide the timing.

Asynchronous Character Format

Each character consists of a start bit, 5 to 8 data bits, an optional parity bit and 1 or 2 stop bits. The

Agilent 35670A does not support a 1.5 stop bit. The total time from the beginning of one start bit to the

end of the last stop bit is called a character frame.

Figure 9-2 shows a structure of an asynchronous character and its relationship to previous and succeeding

characters.

9-3

Figure 9-2. Asynchronous Format of a Single Character

Hardware Requirements

The analyzer’s RS-232-C connector is located on the rear panel. It is a 9-pin, male, D-series connector

that is set up for DTE (Data Terminal Equipment) applications. Figure 9-3 shows the pin locations on the

connector.

Table 9-1 describes the signals on each pin of the analyzer’s RS-232-C connector. You can use the

Agilent 24542G cable to properly connect these signals to most Hewlett-Packard printers and plotters.

This cable and many others are available through your local Agilent Technologies Sales and Service

Office. The cable you order should not be more than 50 feet long.

Table 9-1. SERIAL PORT Signal Descriptions

Pin Signal Description I/O

1 not used —

2 Received Data Input

3 Transmitted Data Output

4 Data Terminal Ready (fixed high) Output

5 Signal Ground —

6 Data Set Ready Input

7 Request to Send (fixed high) Output

8 not used —

9 not used —

9-4

Figure 9-3. SERIAL PORT Pin Locations

Configuring the RS-232-C Port

Before information can be successfully transferred between two RS-232-C devices, you must configure

their serial ports. To determine how their ports should be configured, answer the following questions

about the transfer protocol:

What line speed (baud rate) is being used?

How many bits (excluding start, stop and parity bits) are included in each character?

How many stop bits are required on each character you transmit?

What parity is being used: none, odd, or even?

What form of handshaking (pacing, flow control) is used?

This section of the chapter tells you how to control these protocol parameters on the

Agilent 35670A—using either front-panel softkeys or GPIB commands. (To learn how to control them

on your RS-232-C device, refer to its documentation.) The values you specify for these parameters are

stored in non-volatile RAM, so they are not lost when you turn the analyzer off.

Speed (Baud Rate)

You can specify the rate at which data bits are transferred between the analyzer and the external device

with the [Plot/Print] [MORE SETUP] [SERIAL SETUP] [BAUD RATE] softkey or with the

SYSTem:COMMunicate:SERial[:RECeive]:BAUD command. Valid values are 300, 1200, 2400, 4800,

and 9600 baud.

Character Length

You can specify character length with the [Plot/Print] [MORE SETUP] [SERIAL SETUP] [BITS/CHAR] softkey

or with the SYSTem:COMMunicate:SERial[:RECeive]:BITS command. Valid values are 5, 6, 7, and 8

bits.

Number of Stop Bits

You can specify the number of stop bits with the [Plot/Print] [MORE SETUP] [SERIAL SETUP]
[STOP BITS ONE TWO] softkey or with the SYSTem:COMMunicate:SERial[:RECeive]:SBITS command.

Valid values are 1 and 2 bits.

9-5

Parity

Parity is a technique used to detect transmission error by counting the number of bits in a character.

Parity options include:

NONE - Parity bit is not included.

ODD - Parity is odd; there is an even number of “1”s in character bits.

EVEN Parity is even; there is an odd number of “1”s in character bits.

You can control two separate parity parameters: parity type and parity verification.

Parity Type

You can specify the parity type with the [Plot/Print] [MORE SETUP] [SERIAL SETUP] [PARITY] softkey or

with the SYSTem:COMMunicate:SERial[:RECeive]:PARity[:TYPE] command. Valid values are

NONE, ODD, and EVEN.

Parity Verification

You can enable and disable parity verification with the [Plot/Print] [MORE SETUP] [SERIAL SETUP]
[PRTY CHK ON OFF] softkey or with the SYSTem:COMMunicate:SERial[:RECeive]:PARity:CHECk

command. Valid values are ON and OFF.

Handshaking

Controlling the flow of data is important during the data transfer operation to avoid losing data. The input

buffer of a printer may become full as the speed of character transmission exceeds the printer’s ability to

print. Data might be lost if the printer runs out of paper during the transmission. To ensure that the

transmitter does not send characters faster than the receiver can process them, a pacing mechanism is used

to control the flow of data. This pacing mechanism is called a “handshake.” Handshaking is performed

automatically as part of the OUTPUT or ENTER operation.

The Agilent 35670A supports one of handshaking protocol for receiving data: XON/XOFF. It supports

two protocols for transmitting data: XON/XOFF and DSR/DTR. Check your external device’s

documentation to verify that it supports the protocol you want to use.

Receiver Handshaking

You can specify the handshaking method for received data with the [Plot/Print] [MORE SETUP]
[SERIAL SETUP] [RCVR PACE] softkey or the SYSTem:COMMunicate:SERIAL[:RECeive]:PACE

command. Valid values for the softkey are XON/XOFF and NONE. Corresponding values for the GPIB

command are XON and NONE.

Transmitter Handshaking

You can specify the handshaking method for transmitted data with the [Plot/Print] [MORE SETUP]
[SERIAL SETUP] [XMIT PACE] softkey or the SYSTem:COMMunicate:SERIAL:TRANsmit:PACE

command. Valid values for the softkey are XON/XOFF, DSR/DTR, and NONE. Corresponding values

for the GPIB command are XON, DSR, and NONE.

9-6

Transferring Data

The serial RS-232-C interface is designed for relatively simple serial I/O operations.

Entering and Outputting Data

When the RS-232-C interface is properly configured, you are ready to begin data transfers. Outbound

data messages are created by OUTPUT statements. Inbound data messages are created by the interface as

messages are received from the peripheral device. They are transferred to Instrument Basic by ENTER

statements.

Any valid OUTPUT or ENTER statement and variable(s) list may be used, but you must be sure that the

data format is compatible with the peripheral device. For example, non-ASCII data sent to an ASCII line

printer may result in unexpected behavior.

Outbound Data Messages

Outbound data messages are created when an OUTPUT statement is executed. Data is transmitted

directly from the outbound buffer.

The output operation completes after the last byte of the character has been sent. The Instrument Basic

controller waits until the last byte in the statement variable list is transmitted by the interface.

An end-of-line (EOL) sequence is automatically sent at the end of data unless a semicolon or END

appears at the end of a OUTPUT statement. The semicolon delimiter overrides EOL sequence output.

The Output Statement

Data items are transferred one byte at a time, beginning with the left-most item in the source list and

continuing until all of the source items have been sent. Items in the list must be separated by either a

comma or a semicolon. Depending on the use of item separators in the source lists, data items in the

output may or may not be separated by item terminators. The end-of-line (EOL) sequence is described

above.

Example Program Statements

OUTPUT 9;"Hello World"

PRINTER IS 9
PRINT “Hello World”

9-7

Inbound Data Messages

Inbound data messages are created by the RS-232-C interface as information is received from the

peripheral device. ENTER statements are terminated when a new-line character (ASCII LF, decimal

value 10) is encountered. A carriage-return (ASCII CR, decimal value 13) does not terminate a data

string.

Caution Running a real-time measurement while the analyzer is receiving data at a high baud

rate, may result in an overrun condition.

The Enter Statement

Items in ENTER statements can be separated by either a comma or a semicolon. Trailing punctuation is

not allowed. A data item is terminated with a new-line character (ASCII 10).

Example Program Statement

ENTER 9;A$

Clearing the Input Buffer

The input buffer holds 256 characters. Sometimes the input buffer contains characters from previous

transmissions. The statement, CLEAR 9, clears the input buffer.

9-8

Error Detection

Four types of incoming data errors can be detected by the Agilent 35670A.

Parity Errors are signaled when the parity bit does not match–even or odd–the number of “ones”

(including the parity bit) as defined by the interface configuration. When parity is disabled, a parity

check is not made.

Framing errors are signaled when start and stop bits are not properly received during the expected

time frame. They can be caused by a missing start bit, noise errors near the end of the character, or by

improperly specifying character length at the Agilent 35670A or the peripheral device.

Overrun errors result when the Agilent 35670A does not consume characters as fast as they arrive.

Overrun conditions can occur during real-time measurements. If a real-time measurement is running at

the same time the RS-232-C port is transferring data at a high baud rate, you may encounter an overrun

error. This happens as a result of sending a second character to the analyzer before it can read the first

character.

Another type of overrun occurs when characters are sent to the analyzer but an Instrument Basic program

is not reading the characters. There is a 256 byte input buffer which is filled as characters are received. If

this input buffer is filled, an overrun error is generated.

Received BREAKs are detected as a special type of framing error. They generate the same type of

Instrument Basic error as framing errors.

9-9

The Device State Register

The Agilent 35670A’s status registers monitor various analyzer conditions. As shown in figure 9-4, the

Device State register set contains several bits that monitor the condition of RS-232-C data transfers:

Bit 6 is set to 1 when a character is in the input buffer.

Bit 7 is set to 1 when input is held off due to handshake protocol conditions.

Bit 8 is set to 1 when output is held off due to handshake protocol conditions.

Bit 9 is set to 1 when a framing error, overrun error, parity error, or break is detected.

9-10

Figure 9-4. The Device State Register Set

Event-Initiated Branching

Instrument Basic allows event-initiated branching, which uses interrupts to redirect program flow. Each

time the program finishes a line, the analyzer executes an “event-checking” routine. This

“event-checking” routine causes the program to branch to a specified statement if an enabled event has

occurred.

The Agilent 35670A supports one type of event-initiated branching. ON TIMEOUT generates an

interrupt when an interface or device takes longer than a specified time to respond to a data-transfer

handshake.

All “ON-event” statements have a corresponding “OFF-event” statement.

It is possible to temporarily disable an event-initiated branch. A special section of code can be

“protected,” that is, not be interrupted, with a DISABLE statement.

See “Program Structure and Flow” in “Instrument Basic Programming Techniques” (Instrument Basic

Users Handbook) for additional information about event-initiated branching.

Timeouts

ON TIMEOUT defines and enables an event-initiated branch to be taken when an I/O timeout occurs on

the specified interface. The timeout is specified in seconds. For the RS-232-C interface the maximum

timeout is 25.5 seconds.

Timeouts apply to ENTER and OUTPUT statements, and operations involving the PRINTER IS,

PRINTALL IS and PLOTTER IS external devices.

OFF TIMEOUT deactivates ON TIMEOUT. DISABLE does not affect ON TIMEOUT.

Examples

ON TIMEOUT 9, 1.5 GOTO 1200

ON TIMEOUT 9, .5 GOSUB Service_routine

9-11

10

Interfacing with the Parallel Port

10

Interfacing with the Parallel Port

Introduction

This chapter describes the parallel port, which is located on the analyzer’s rear panel. It explains how you

can use the interface to send data to an external plotter or printer.

10-1

The Parallel Interface

The parallel interface is used exclusively for output to plotters and printers. It is usually faster than the

serial interface because it sends data one character (eight bits) at a time—on eight parallel data lines.

(The serial port sends data one bit at a time—on a single data line.)

As shown it figure 10-1, both the analyzer and the Instrument BASIC program can use the parallel port.

The analyzer gains access to the port when you press [Plot/Print] [PLOT/PRNT DESTINATN]
[OUTPUT TO PARALLEL] or when you send the HCOP:DEST CENT command via GPIB. The program

gains access to the port with select code 26. You cannot change the port’s select code.

Interfacing with the Parallel Port

The Parallel Interface

10-2

Figure 10-1. Agilent 35670A Parallel Port

Hardware Requirements

The analyzer’s parallel connector is located on the rear panel. It is a 25-pin, female, D-series connector.

Figure 10-2 shows the pin locations on the connector.

Table 10-1 describes the signals on each pin of the analyzer’s parallel connector. You can use the

Agilent 92284A cable to properly connect these signals to most Hewlett-Packard printers and plotters.

This cable and many others are available through your local Agilent Technologies Sales and Service

Office. The cable you order should not be more than 10 feet long.

Table 10-1. PARALLEL PORT Signal Descriptions

Pin Signal Description I/O

1 Strobe Output

2-9 Data 0-7 Outputs

10 Ack Input

11 Busy Input

12 Paper Empty Input

13 Select Input

14 not used —

15 Error Input

16 Init Output

17 not used —

18 Ground —

19-25 not used —

Interfacing with the Parallel Port
Hardware Requirements

10-3

Figure 10-2. Parallel Port Pin Locations

Transferring Data

Instrument BASIC programs use the OUTPUT statement to send data to plotters and printers. When an

OUTPUT statement is executed, the program creates an outbound data message and sends it to the

specified port. When the last character of the data message has been sent, the program sends an

end-of-line (EOL) sequence to terminate output.

Note Be sure the data format of any item included in your OUTPUT statement is compatible

with your plotter or printer. Sending incompatible data can result in unexpected

behavior. (For example, do not send non-ASCII data to an ASCII line printer.)

The following examples both send data to a printer that is connected to the parallel port (select code 26):

OUTPUT 26;"Hello World"

PRINTER IS 26
PRINT “Hello World”

Interfacing with the Parallel Port
Transferring Data

10-4

11

Example Programs

11

Example Programs

This chapter contains listings of some of the programs on the Agilent 35670A Example Programs disk.

The programs included in this chapter are described below. You can load and run the program

“READ_ME” for descriptions of other programs on the disk.

ARBSOURC Demonstrates programming the arbitrary source and transferring trace data to the data

registers. The arbitrary source uses one of three waveforms, which have been downloaded to the data

register. An existing trace is copied to the data register, uploaded, shifted left and right and then reloaded

into the arbitrary source data register.

MANARM Demonstrates using the Standard Event Register to detect a WAITING_FOR_ARM event and

generates an SRQ. Program handles SRQ interrupt and allows you to arm

the measurement.

OPC_SYNC Demonstrates synchronizing the program and the analyzer using the *OPC statement to set the

OPERATION_COMPLETE bit in the Standard Event Status Register. The Status Register is masked to

generate an SRQ when all pending operations have completed. The program handles the service request

interrupt.

OPCQSYNC Demonstrates synchronizing the program and the analyzer using the *OPC? query. The

programs pauses on an ENTER statement while it waits for the pending GPIB operations to complete and

for a “1” to be returned in response to the *OPC? query.

RPNCALC Demonstrates waveform math capabilities of the analyzer by creating a immediate mode

waveform calculator. Uses data registers to implement Reverse Polish Notation calculations. Allows

most waveform math functions to be performed using trace data, register data, and constants.

TWO_CTLR Demonstrates using an external controller to download an Instrument Basic program, run it,

and query variables.

WAI_SYNC Demonstrates synchronizing the program and the analyzer using the *WAI statement.

11-1

ARBSOURC

10 !————————————————————————
20 ! BASIC Program: ARBSOURCE
30 ! This program is used with the Agilent 35670a
40 ! Dynamic Signal Analyzer. It allows a user
50 ! to create ramp, triangle, and square waves
60 ! and download them to an analyzer data register
70 ! to be used by the arbitrary source.
80 ! It also allows captured traces to be uploaded
90 ! to the program, shifted left or right, and then
100 ! downloaded into a data register.
110 !————————————————————————-
120 COM /Traces/ Trace_in(1:1024),Trace_out(1:1024)
130 COM /Assigns/ @Format_off,@Format_on,@Agilent35670a
140 ASSIGN @Format_on TO 800;FORMAT ON
150 ASSIGN @Format_off TO 800;FORMAT OFF
160 ASSIGN @Agilent35670a TO 800
170 INTEGER Byte_count,Block_count
180 ! Set data xfer to binary
190 OUTPUT @Format_on;"FORM:DATA REAL, 64"
200 Frequency=1024
210 High=2.5 ! high limit for arbitrary source
220 Low=-2.5 ! low limit for arbitrary source
230 !
240 !————————————————————————-
250 ! Setup display, and arbitrary source
260 !————————————————————————-
270 OUTPUT @Agilent35670a;"SYST:PRES"
280 OUTPUT @Agilent35670a;"DISP:FORM ULOW"
290 OUTPUT @Agilent35670a;"CALC1:FEED ‘XTIM:VOLT 1’; *WAI"
300 OUTPUT @Agilent35670a;"CALC2:FEED ‘D1’; *WAI"
310 OUTPUT @Agilent35670a;"ABOR;:INIT; *WAI"
320 OUTPUT @Agilent35670a;"INIT:CONT OFF"
330 Running=False
340 OUTPUT @Agilent35670a;"TRAC D1,TRAC1; *WAI"
350 OUTPUT @Agilent35670a;"SOUR:USER D1"
360 OUTPUT @Agilent35670a;"SOUR:FUNC USER"
370 OUTPUT @Agilent35670a;"SOUR:VOLT 0.99975 Vpk"
380 OUTPUT @Agilent35670a;"OUTP ON"
390 OUTPUT @Agilent35670a;"DISP:WIND1:TRAC:Y:AUTO ON"
400 OUTPUT @Agilent35670a;"CALC:ACT B"
410 OUTPUT @Agilent35670a;"DISP:WIND2:TRAC:Y:AUTO ON"
420 OUTPUT @Agilent35670a;"CAL:AUTO OFF"
430 !
440 !————————————————————————
450 ! Setup menu
460 !————————————————————————
470 ON KEY 0 LABEL “RAMP” GOSUB Ramp
480 ON KEY 1 LABEL “TRIANGLE” GOSUB Triangle
490 ON KEY 2 LABEL “SQUARE” GOSUB Square
500 ON KEY 3 LABEL “COPY A ->D1" GOSUB Storetrace

Example Programs
ARBSOURC

11-2

510 ON KEY 4 LABEL “LOAD D1 ” GOSUB Data_in
520 ON KEY 5 LABEL “SHIFT TRACE” CALL Shift_trace
530 ON KEY 6 LABEL “” GOTO Waiting
540 ON KEY 7 LABEL “PAUSE/ CONTINUE” GOSUB Pause_cont
550 ON KEY 8 LABEL “EXIT” GOTO Endit
560 !
570 Waiting:!GOTO Waiting
580 GOTO Waiting
590 !
600 !————————————————————————-
610 Ramp:! create ramp wave in D1
620 GOSUB Enterfreq
630 DISP “CALCULATING RAMP WAVE”
640 N=1
650 FOR I=1 TO 1024/Period
660 Current=Low
670 FOR J=1 TO Period
680 Trace_out(N)=Current
690 N=N+1
700 Current=Current+(High-Low)/Period
710 NEXT J
720 NEXT I
730 !
740 CALL Data_out ! send Trace_out to D1
750 DISP “”
760 RETURN
770 !
780 !————————————————————————-
790 Triangle:! create triangle wave in D1
800 GOSUB Enterfreq
810 DISP “CALCULATING TRIANGLE WAVE”
820 N=1
830 FOR I=1 TO 1024/Period
840 Current=Low
850 FOR J=1 TO Period/2
860 Trace_out(N)=Current
870 N=N+1
880 Current=Current+(High-Low)/Period
890 NEXT J
900 Current=Current-(High-Low)/Period
910 FOR J=1 TO Period/2
920 Current=Current-(High-Low)/Period
930 Trace_out(N)=Current
940 N=N+1
950 NEXT J
960 NEXT I
970 CALL Data_out ! send Trace_out to D1
980 DISP “”
990 RETURN
1000 !
1010 !————————————————————————-
1020 Square:! create square wave in Trace_out array
1030 GOSUB Enterfreq

Example Programs
ARBSOURC

11-3

1040 DISP “CALCULATING SQUARE WAVE”
1050 Toggle=1
1060 N=1
1070 Current=Low
1080 FOR I=1 TO 1024/Period
1090 FOR J=1 TO Period
1100 Trace_out(N)=Current
1110 N=N+1
1120 NEXT J
1130 IF Toggle THEN Current=High
1140 IF NOT Toggle THEN Current=Low
1150 Toggle=NOT Toggle
1160 NEXT I
1170 CALL Data_out ! send Trace_out to D1
1180 DISP “”
1190 RETURN
1200 !
1210 !————————————————————————-
1220 Storetrace:! Copy Trace 1 to D1
1230 OUTPUT @Agilent35670a;"TRAC D1,TRAC1"
1240 RETURN
1250 !
1260 ! Enter frequency, which must be power of two so
1270 ! that waveform is symmetrical in 1024 point block
1280 !————————————————————————-
1290 Enterfreq:!
1300 INPUT “Enter frequency (as power of 2 = 128): ”,Frequency
1310 IF Frequency 65536 THEN Frequency = 65536
1320 Period=128/Frequency*1024
1330 RETURN
1340 !
1350 !————————————————————————-
1360 Data_in:! Read D1 trace data into Trace_in array
1370 OUTPUT @Format_on;"TRAC:DATA? D1"
1380 ENTER @Format_on USING “%,A,D”;A$,Byte_count
1390 ENTER @Format_on USING “%,4D”;Block_count
1400 ENTER @Format_off;Trace_in(*)
1410 ENTER @Format_on;A$
1420 OUTPUT @Agilent35670a;"ABOR;:INIT; *WAI"
1430 OUTPUT @Agilent35670a;"INIT:CONT OFF; *WAI"
1440 RETURN
1450 !
1460 !————————————————————————-
1470 Pause_cont:! Pause or continues measurement
1480 IF Running THEN
1490 OUTPUT @Agilent35670a;"INIT:CONT OFF"
1500 ELSE
1510 OUTPUT @Agilent35670a;"INIT:CONT ON"
1520 END IF
1530 Running=NOT Running
1540 RETURN
1550 !
1560 Endit:END

Example Programs
ARBSOURC

11-4

1570 !
1580 SUB Data_out
1590 !————————————————————————
1600 ! Sends trace data from Trace_out array to D1
1610 ! data register in Agilent 35670a and sets source
1620 ! output as arbitrary source
1630 !————————————————————————
1640 COM /Traces/ Trace_in(1:1024),Trace_out(1:1024)
1650 COM /Assigns/ @Format_off,@Format_on,@Agilent35670a
1660 OUTPUT @Format_on;"TRAC:DATA D1,";
1670 OUTPUT @Format_on;"#48192";
1680 OUTPUT @Format_off;Trace_out(*);
1690 OUTPUT @Format_on;CHR$(10)
1700 FOR I=1 TO 1024
1710 Trace_in(I)=Trace_out(I)
1720 NEXT I
1730 Running=True
1740 SUBEND
1750 !
1760 SUB Shift_trace
1770 !————————————————————————
1780 ! Shifts trace left or right by defined stepsize
1790 ! and loads shifted trace into D1
1800 !————————————————————————
1810 COM /Traces/ Trace_in(1:1024),Trace_out(1:1024)
1820 Stepsize=10
1830 ON KEY 0 LABEL “”,2 GOTO Waiting
1840 ON KEY 1 LABEL “SHIFT LEFT”,2 GOSUB Shift_left
1850 ON KEY 2 LABEL “SHIFT RIGHT”,2 GOSUB Shift_right
1860 ON KEY 3 LABEL “”,2 GOTO Waiting
1870 ON KEY 4 LABEL “”,2 GOTO Waiting
1880 ON KEY 5 LABEL “DEFINE STEPSIZE”,2 GOSUB Step_size
1890 ON KEY 6 LABEL “”,2 GOTO Waiting
1900 ON KEY 7 LABEL “”,2 GOTO Waiting
1910 ON KEY 8 LABEL “RETURN”,2 GOTO Sub_end
1920 !
1930 Waiting:GOTO Waiting
1940 !
1950 Shift_left:! shift the trace left “Stepsize” bins
1960 DISP “SHIFTING D1 DATA”
1970 I=1
1980 FOR J=Stepsize TO 1024
1990 Trace_out(I)=Trace_in(J)
2000 I=I+1
2010 NEXT J
2020 FOR J=1 TO Stepsize-1
2030 Trace_out(I)=Trace_in(J)
2040 I=I+1
2050 NEXT J
2060 CALL Data_out
2070 DISP “”
2080 RETURN
2090 !

Example Programs
ARBSOURC

11-5

2100 !————————————————————————-
2110 Shift_right:! shift the trace right “Stepsize” bins
2120 DISP “SHIFTING D1 DATA”
2130 I=1
2140 FOR J=Stepsize TO 1024
2150 Trace_out(J)=Trace_in(I)
2160 I=I+1
2170 NEXT J
2180 FOR J=1 TO Stepsize-1
2190 Trace_out(J)=Trace_in(I)
2200 I=I+1
2210 NEXT J
2220 CALL Data_out ! send trace to D1
2230 DISP “”
2240 RETURN
2250 !————————————————————————-
2260 Step_size:!
2270 INPUT “Enter shift stepsize (1..1024)”,Stepsize
2280 RETURN
2290 !————————————————————————-
2300 Sub_end:SUBEND

Example Programs
ARBSOURC

11-6

MANARM

10 ! Instrument Basic example program: MANARM
20 ! —————————————————————————————————
30 !
40 ! This program demonstrates using the instrument’s
50 ! status registers to enable SRQs for event-
60 ! initiated program interrupts. In this case the
70 ! waiting_for_arm bit is detected.
80 !
90 ! —————————————————————————————————
100 Sc=8
110 Addr=0
120 Device=(Sc*100)+Addr
130 ASSIGN @Agilent35670a TO Device
140 CLEAR SCREEN
150 OUTPUT @Agilent35670a;"SYST:PRES"
160 IF Sc=8 THEN
170 OUTPUT @Agilent35670a;"DISP:FORM ULOW"
180 OUTPUT @Agilent35670a;"DISP:PROG LOW"
190 CLEAR SCREEN
200 END IF
210 !
220 ! Setup registers to detect WAITING_FOR_ARM
230 !
240 ! clear any pending events
250 OUTPUT @Agilent35670a;"*CLS"
260 ! allow SRQ from operation register
270 OUTPUT @Agilent35670a;"*SRE 128"
280 ! allow SRQ from waiting_for_arm bit
290 OUTPUT @Agilent35670a;"STAT:OPER:ENAB 64"
300 ! latch waiting_for_arm TRUE
310 OUTPUT @Agilent35670a;"STAT:OPER:PTR 64"
320 ! do not latch waiting_for_arm FALSE
330 OUTPUT @Agilent35670a;"STAT:OPER:NTR 0"
340 !
350 ! set up interrupts
360 ON INTR Sc GOSUB Check_srq
370 ENABLE INTR Sc;2
380 !
390 OUTPUT @Agilent35670a;"FREQ:SPAN 100 Hz"
400 OUTPUT @Agilent35670a;"ARM:SOUR MAN"
410 OUTPUT @Agilent35670a;"ABOR;:INIT"
420 !
430 ! Wait for SRQ
440 !
450 Hang_out:GOTO Hang_out
460 !
470 Check_srq: !
480 !
490 PRINT “SRQ Received”
500 Sb=SPOLL(Device)

Example Programs
MANARM

11-7

510 PRINT “SPOLL(”;Device;") = “;Sb
520 Queryarm(@Agilent35670a)
530 ENABLE INTR Sc
540 RETURN
550 !
560 END
570 !**
580 ! Query Standard Event Status Register and arm
590 ! if waiting_for_arm event detected
600 !**
610 SUB Queryarm(@Device)
620 OUTPUT @Device;"STAT:OPER:EVEN?"
630 ENTER @Device;Resp
640 PRINT “STAT:OPER:EVEN?: ”;Resp
650 IF Resp=64 THEN
660 INPUT “PRESS ENTER TO ARM (ENTER ‘Q’ TO QUIT)”,A$
670 IF UPC$(A$)="Q" THEN STOP
680 OUTPUT @Device;"ARM"
690 PRINT “ARMED!”
700 PRINT
710 END IF
720 SUBEND

Example Programs
MANARM

11-8

OPC_SYNC

10 ! Instrument Basic program: OPCSYNC - Measurement synchronization
20 ! —————————————————————————————————-
30 ! This program demonstrates how to use the *OPC command to
40 ! allow an SRQ to interrupt program execution. *OPC will set
50 ! the OPERATION_COMPLETE bit in the EVENT STATUS register
60 ! when all pending GPIB commands have finished. With the proper
70 ! register masks, this will generate a service request.
80 ! —————————————————————————————————-
90 !
100 Scode=8 ! Interface select code
110 Address=0
120 Agilent35670a=Scode*100+Address
130 !
140 OUTPUT Agilent35670a;"FREQ:SPAN 50 HZ" !Measurement will take 8 seconds
150 OUTPUT Agilent35670a;"*CLS" !Clear the STATUS BYTE register
160 OUTPUT Agilent35670a;"*ESE 1" !Program the EVENT STATUS ENABLE reg.
170 OUTPUT Agilent35670a;"*SRE 32" !Program the STATUS BYTE ENABLE reg.
180 !
190 ON INTR Scode,2 GOTO Srq_handler !Set up interrupt branching
200 ENABLE INTR Scode;2 !Allow SRQ to generate an interrupt
210 !
220 OUTPUT Agilent35670a;"ABORT; INIT" !Start the measurement
230 OUTPUT Agilent35670a;"*OPC" !Generate SRQ when all commands have
240 !finished.
250 Start_time=TIMEDATE
260 LOOP !Do something useful while waiting
270 DISP USING “14A, 2D.D”;"Elapsed time :",TIMEDATE-Start_time
280 WAIT .1
290 END LOOP
300 !
310 Srq_handler: !Got an SRQ
320 Stb=SPOLL(Agilent35670a) !Read STATUS BYTE and clear SRQ
330 BEEP
340 OUTPUT Agilent35670a;"*ESR?" !Read and clear EVENT STATUS reg.
350 ENTER Agilent35670a;Esr
360 DISP “Got the SRQ! SPOLL returns:”;Stb;" ESR returns:";Esr
370 END

Example Programs
OPC_SYNC

11-9

OPCQSYNC

10 !
20 ! Instrument Basic program: OPCQSYNC - Measurement synchronization
30 ! ——————————————————————————————————-
40 ! This program demonstrates how to use the *OPC? GPIB command
50 ! to hang the bus on a query before continuing on with the
60 ! program. After all pending GPIB commands have finished,
70 ! the Agilent 35670a will return a ‘1’ in response to *OPC?.
80 ! ——————————————————————————————————-
90 !
100 Scode=8
110 Agilent35670a=Scode*100
120 !
130 OUTPUT Agilent35670a;"SYST:PRES" !Preset the Agilent35670a
140 OUTPUT Agilent35670a;"*OPC?" !Pause on ENTER statement until
150 ENTER Agilent35670a;Opc !’*RST’ command has finished
160 !
170 OUTPUT Agilent35670a;"FREQ:SPAN 50 Hz" !Measurement will take 8 seconds
180 DISP “Measurement started ...”
190 OUTPUT Agilent35670a;"ABOR; INIT" !Start the measurement
200 OUTPUT Agilent35670a;"*OPC?" !Pause until all pending GPIB
210 ENTER Agilent35670a;Opc !commands have finished.
220 BEEP
230 DISP “Measurement done”
240 OUTPUT Agilent35670a;"DISP:FORM ULOW"
250 OUTPUT Agilent35670a;"INIT:CONT OFF"
260 END

Example Programs
OPCQSYNC

11-10

RPNCALC

10 !==
20 !
30 ! RPNCALC
40 ! Reverse Polish Notation Waveform Calculator
50 !
60 ! This Instrument Basic program runs on the
70 ! Agilent 35670a Dynamic Signal Analyzer.
80 !
90 ! It uses data registers D1 through D4 to emulate
100 ! the stack common to most Agilent RPN calculators.
110 ! Traces from either the upper or lower trace
120 ! displays may be loaded into the X register (D1).
130 !
140 ! Unary operations (e.g., FFT and CONJ) operate
150 ! on the X register. Binary operations (+-/*)
160 ! operate on the X and Y registers (D1 and D2).
170 ! All math operations place results in D1.
180 !
190 ! Rotate and Enter functions are available as well
200 ! as the ability to display various trace types
210 ! and to adjust trace coordinates and autoscale.
220 !
230 !==
240 COM @Agilent35670a
250 DIM Trca$[20],Trcb$[20],Trc$[20]
260 ASSIGN @Agilent35670a TO 800
270 OUTPUT @Agilent35670a;"DISP:FORM ULOW"
280 OUTPUT @Agilent35670a;"INP2 ON"
290 Activetrc=1
300 OUTPUT @Agilent35670a;"CALC:ACT A"
310 Keys:!
320 ON KEY 0 LABEL “LOAD X ” CALL Loadx
330 ON KEY 1 LABEL “ENTER” GOSUB Ent
340 ON KEY 2 LABEL “ROTATE UP” GOSUB Rot_up
350 ON KEY 3 LABEL “ROTATE DOWN” GOSUB Rot_down
360 ON KEY 4 LABEL “FUNCTIONS” CALL Functions
370 ON KEY 5 LABEL “+ - / * ” CALL Ops
380 ON KEY 6 LABEL “DISPLAY TRACE” CALL Select_trc
390 ON KEY 7 LABEL “EXIT” GOTO Exit1
400 ON KEY 8 LABEL “” GOTO Waiting
410 !
420 Waiting:GOTO Waiting !
430 !
440 Ent: ! shifts up without replacing D1
450 Shift(1)
460 RETURN
470 !
480 !—————————————————————
490 Rot_up: !shifts D1-D4 up and copies D5 to D1
500 Shift(1)

Example Programs
RPNCALC

11-11

510 OUTPUT @Agilent35670a;"TRAC D1, D5"
520 RETURN
530 !—————————————————————
540 Rot_down: !copies D1 to D5 and shifts D5-D2 down
550 OUTPUT @Agilent35670a;"TRAC D5, D1"
560 Shift(0)
570 RETURN
580 !
590 Exit1:!
600 END
610 !—————————————————————
620 SUB Loadx
630 !—————————————————————
640 ! Loads D1 register with the contents of
650 ! Trace A, Trace B, or a Constant
660 ! and shifts D2-D4 up
670 !—————————————————————
680 COM @Agilent35670a
690 !
700 ON KEY 0 LABEL “TRACE A”,2 GOSUB Channel1
710 ON KEY 1 LABEL “TRACE B”,2 GOSUB Channel2
720 ON KEY 2 LABEL “”,2 GOTO Twiddle
730 ON KEY 3 LABEL “CONSTANT”,2 GOTO Constant
740 ON KEY 4 LABEL “”,2 GOTO Twiddle
750 ON KEY 5 LABEL “”,2 GOTO Twiddle
760 ON KEY 6 LABEL “”,2 GOTO Twiddle
770 ON KEY 7 LABEL “”,2 GOTO Twiddle
780 ON KEY 8 LABEL “RETURN”,2 GOTO Sub_exit
790 !
800 Twiddle:GOTO Twiddle
810 !
820 Channel1:!
830 CALL Shift(1)
840 OUTPUT @Agilent35670a;"TRAC D1,TRAC1"
850 SUBEXIT
860 !
870 Channel2:!
880 CALL Shift(1)
890 OUTPUT @Agilent35670a;"TRAC D1,TRAC2"
900 SUBEXIT
910 !
920 Constant:!
930 CALL Shift(1)
940 CALL Sel_const
950 Sub_exit:!
960 SUBEND
970 !
980 SUB Shift(Direction)
990 !——————————————————————
1000 ! Shifts stack (D1-D4) up or down by one
1010 ! using D5 as a temporary buffer
1020 !——————————————————————
1030 COM @Agilent35670a

Example Programs
RPNCALC

11-12

1040 IF Direction=1 THEN ! shift up
1050 OUTPUT @Agilent35670a;"TRAC D5, D4"
1060 OUTPUT @Agilent35670a;"TRAC D4, D3"
1070 OUTPUT @Agilent35670a;"TRAC D3, D2"
1080 OUTPUT @Agilent35670a;"TRAC D2, D1"
1090 ELSE ! shift down
1100 OUTPUT @Agilent35670a;"TRAC D1, D2"
1110 OUTPUT @Agilent35670a;"TRAC D2, D3"
1120 OUTPUT @Agilent35670a;"TRAC D3, D4"
1130 OUTPUT @Agilent35670a;"TRAC D4, D5"
1140 END IF
1150 SUBEND
1160 !
1170 SUB Functions
1180 !——————————————————————
1190 ! Performs immediate unary math on D1 trace
1200 !——————————————————————
1210 COM @Agilent35670a
1220 ON KEY 0 LABEL “CONJ”,2 GOSUB Conj
1230 ON KEY 1 LABEL “MAG”,2 GOSUB Mag
1240 ON KEY 2 LABEL “REAL”,2 GOSUB Realpart
1250 ON KEY 3 LABEL “IMAG”,2 GOSUB Imagpart
1260 ON KEY 4 LABEL “SQRT”,2 GOSUB Sqroot
1270 ON KEY 5 LABEL “FFT”,2 GOSUB Fft
1280 ON KEY 6 LABEL “IFFT”,2 GOSUB Ifft
1290 ON KEY 7 LABEL “PSD”,2 GOSUB Psd
1300 ON KEY 8 LABEL “LN”,2 GOSUB Ln
1310 ON KEY 9 LABEL “EX”,2 GOSUB Expn
1320 DISP “Hit RTN for EX function”
1330 Waiting: GOTO Waiting
1340 !—————————————————————
1350 Conj:!
1360 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (CONJ(D1))"
1370 DISP “”
1380 GOTO Calc
1390 !—————————————————————
1400 Mag:!
1410 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (MAG(D1))"
1420 DISP “”
1430 GOTO Calc
1440 !—————————————————————
1450 Realpart:!
1460 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (REAL(D1))"
1470 DISP “”
1480 GOTO Calc
1490 !—————————————————————
1500 Imagpart:!
1510 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (IMAG(D1))"
1520 DISP “”
1530 GOTO Calc
1540 !—————————————————————
1550 Sqroot:!
1560 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (SQRT(D1))"

Example Programs
RPNCALC

11-13

1570 DISP “”
1580 GOTO Calc
1590 !—————————————————————
1600 Fft:!
1610 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (FFT(D1))"
1620 DISP “”
1630 GOTO Calc
1640 !—————————————————————
1650 Ifft:!
1660 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (IFFT(D1))"
1670 DISP “”
1680 GOTO Calc
1690 !—————————————————————
1700 Psd:!
1710 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (PSD(D1))"
1720 DISP “”
1730 GOTO Calc
1740 !—————————————————————
1750 Ln:!
1760 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (LN(D1))"
1770 DISP “”
1780 GOTO Calc
1790 !—————————————————————
1800 Expn:!
1810 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (EXP(D1))"
1820 Calc:! Performs calculation and stores it in D1
1830 OUTPUT @Agilent35670a;"CALC:MATH:STATE ON"
1840 OUTPUT @Agilent35670a;"TRAC D1, TRAC1"
1850 OUTPUT @Agilent35670a;"CALC:MATH:STATE OFF"
1860 DISP “”
1870 SUBEND
1880 !
1890 SUB Tracedisplay(Trace)
1900 !——————————————————————
1910 ! Allows selected trace (A or B)
1920 ! to be stored to D6-D8, replaced by D1-D8,
1930 ! autoscaled, or have its trace coordinates
1940 ! Changed.
1950 ! Called by: Select_trc
1960 !——————————————————————
1970 COM @Agilent35670a
1980 ON KEY 0 LABEL “”,3 GOTO Waiting
1990 ON KEY 1 LABEL “STORE IN D6",3 GOSUB D6
2000 ON KEY 2 LABEL “STORE IN D7",3 GOSUB D7
2010 ON KEY 3 LABEL “STORE IN D8",3 GOSUB D8
2020 ON KEY 4 LABEL “”,3 GOTO Waiting
2030 ON KEY 5 LABEL “RECALL D1 - D8",3 GOSUB Disp
2040 ON KEY 6 LABEL “TRACE COORD”,3 GOSUB Coord
2050 ON KEY 7 LABEL “AUTOSCALE”,3 GOSUB Auto
2060 ON KEY 8 LABEL “RETURN”,3 GOTO Sub_exit
2070 !
2080 Waiting:GOTO Waiting
2090 !

Example Programs
RPNCALC

11-14

2100 D6:! copy trace to D6
2110 OUTPUT @Agilent35670a;"TRAC D6, TRAC"&VAL$(Trace)
2120 RETURN
2130 D7:! copy trace to D7
2140 OUTPUT @Agilent35670a;"TRAC D7, TRAC"&VAL$(Trace)
2150 RETURN
2160 D8:! copy trace to D8
2170 OUTPUT @Agilent35670a;"TRAC D8, TRAC"&VAL$(Trace)
2180 RETURN
2190 Disp:! call Disp_regs
2200 Disp_regs(Trace)
2210 RETURN
2220 Coord:! call Trace_coord
2230 Trace_coord(Trace)
2240 RETURN
2250 Auto:! autoscale trace
2260 OUTPUT @Agilent35670a;"DISP:WIND"&VAL$(Trace)&":TRAC:Y:AUTO ON"
2270 RETURN
2280 Sub_exit:!
2290 SUBEND
2300 !
2310 SUB Select_trc
2320 !——————————————————————
2330 ! Selects either Trace A or Trace B as active
2340 ! trace for Tracedisplay routines
2350 !——————————————————————
2360 ON KEY 0 LABEL “”,2 GOTO Waiting
2370 ON KEY 1 LABEL “UPPER”,2 GOTO Sel_trc1
2380 ON KEY 2 LABEL “LOWER”,2 GOTO Sel_trc2
2390 ON KEY 3 LABEL “”,2 GOTO Waiting
2400 ON KEY 4 LABEL “”,2 GOTO Waiting
2410 ON KEY 5 LABEL “”,2 GOTO Waiting
2420 ON KEY 6 LABEL “”,2 GOTO Waiting
2430 ON KEY 7 LABEL “”,2 GOTO Waiting
2440 ON KEY 8 LABEL “RETURN”,2 GOTO Sub_exit
2450 Waiting:GOTO Waiting
2460 !—————————————————————
2470 Sel_trc1:!
2480 Tracedisplay(1)
2490 SUBEXIT
2500 !—————————————————————
2510 Sel_trc2:!
2520 Tracedisplay(2)
2530 SUBEXIT
2540 !—————————————————————
2550 Sub_exit:!
2560 SUBEND
2570 !
2580 SUB Disp_regs(Trc)
2590 !——————————————————————
2600 ! Displays selected register in trace A or B
2610 ! Called by: Tracedisplay
2620 !——————————————————————

Example Programs
RPNCALC

11-15

2630 COM @Agilent35670a
2640 ON KEY 0 LABEL “D1",4 GOSUB D1
2650 ON KEY 1 LABEL “D2",4 GOSUB D2
2660 ON KEY 2 LABEL “D3",4 GOSUB D3
2670 ON KEY 3 LABEL “D4",4 GOSUB D4
2680 ON KEY 4 LABEL “D5",4 GOSUB D5
2690 ON KEY 5 LABEL “D6",4 GOSUB D6
2700 ON KEY 6 LABEL “D7",4 GOSUB D7
2710 ON KEY 7 LABEL “D8",4 GOSUB D8
2720 ON KEY 8 LABEL “RETURN”,4 GOTO Sub_exit
2730 !
2740 Waiting:GOTO Waiting
2750 !
2760 D1:!
2770 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D1’; *WAI"
2780 RETURN
2790 !
2800 D2:!
2810 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D2’; *WAI"
2820 RETURN
2830 !
2840 D3:!
2850 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D3’; *WAI"
2860 RETURN
2870 !
2880 D4:!
2890 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D4’; *WAI"
2900 RETURN
2910 !
2920 D5:!
2930 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D5’; *WAI"
2940 RETURN
2950 !
2960 D6:!
2970 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D6’; *WAI"
2980 RETURN
2990 !
3000 D7:!
3010 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D7’; *WAI"
3020 RETURN
3030 !
3040 D8:!
3050 OUTPUT @Agilent35670a;"CALC"&VAL$(Trc)&":FEED ‘D8’; *WAI"
3060 RETURN
3070 !
3080 Sub_exit:!
3090 SUBEND
3100 !
3110 SUB Trace_coord(Trace)
3120 !——————————————————————
3130 ! Selects trace coordinates for trace
3140 ! Called by: Tracedisplay
3150 !——————————————————————

Example Programs

RPNCALC

11-16

3160 COM @Agilent35670a
3170 T$=VAL$(Trace)
3180 !
3190 ON KEY 0 LABEL “LINEAR MAGNITUDE”,4 GOSUB Lin
3200 ON KEY 1 LABEL “LOG MAGNITUDE”,4 GOSUB Log
3210 ON KEY 2 LABEL “DB MAGNITUDE”,4 GOSUB Db
3220 ON KEY 3 LABEL “PHASE”,4 GOSUB Phase
3230 ON KEY 4 LABEL “UNWRAPPEDPHASE”,4 GOSUB Unwrapped
3240 ON KEY 5 LABEL “REAL PART”,4 GOSUB Realpart
3250 ON KEY 6 LABEL “IMAGINARYPART”,4 GOSUB Imagpart
3260 ON KEY 7 LABEL “NYQUIST DIAGRAM”,4 GOSUB Nyquist
3270 ON KEY 8 LABEL “RETURN”,4 GOTO Sub_exit
3280 !
3290 Lin:!
3300 OUTPUT @Agilent35670a;"CALC"&T$&":FORM MLIN; *WAI"
3310 OUTPUT @Agilent35670a;"DISP:WIND"&T$&":TRAC:Y:SPAC LIN; *WAI"
3320 RETURN
3330 !
3340 Log:!
3350 OUTPUT @Agilent35670a;"CALC"&T$&":FORM MLIN"
3360 OUTPUT @Agilent35670a;"DISP:WIND"&T$&":TRAC:Y:SPAC LOG; *WAI"
3370 RETURN
3380 !
3390 Db:!
3400 OUTPUT @Agilent35670a;"CALC"&T$&":FORM MLOG; *WAI"
3410 RETURN
3420 !
3430 Phase:!
3440 OUTPUT @Agilent35670a;"CALC"&T$&":FORM PHAS; *WAI"
3450 RETURN
3460 !
3470 Unwrapped:!
3480 OUTPUT @Agilent35670a;"CALC"&T$&":FORM UPH; *WAI"
3490 RETURN
3500 !
3510 Realpart:!
3520 OUTPUT @Agilent35670a;"CALC"&T$&":FORM REAL; *WAI"
3530 RETURN
3540 !
3550 Imagpart:!
3560 OUTPUT @Agilent35670a;"CALC"&T$&":FORM IMAG; *WAI"
3570 RETURN
3580 !
3590 Nyquist:!
3600 OUTPUT @Agilent35670a;"CALC"&T$&":FORM NYQ; *WAI"
3610 RETURN
3620 !
3630 Sub_exit:!
3640 SUBEND
3650 !

3660 SUB Ops
3670 !——————————————————————

Example Programs
RPNCALC

11-17

3680 ! Performs binary operations on D1 and D2
3690 !——————————————————————
3700 COM @Agilent35670a
3710 ON KEY 0 LABEL “ +”,4 GOSUB Plus
3720 ON KEY 1 LABEL “ -”,4 GOSUB Minus
3730 ON KEY 2 LABEL “ /”,4 GOSUB Divide
3740 ON KEY 3 LABEL “ *”,4 GOSUB Mult
3750 FOR I=4 TO 8
3760 ON KEY I LABEL “”,4 GOTO Waiting
3770 NEXT I
3780 !
3790 Waiting:GOTO Waiting
3800 !
3810 Plus:!
3820 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (D1 + D2)"
3830 GOTO Calc
3840 !
3850 Minus:!
3860 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (D2 - D1)"
3870 GOTO Calc
3880 !
3890 Divide:!
3900 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (D2 / D1)"
3910 GOTO Calc
3920 !
3930 Mult:!
3940 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (D1 * D2)"
3950 GOTO Calc
3960 !
3970 Calc:! perform calculation and place in D1
3980 OUTPUT @Agilent35670a;"CALC:MATH:STATE ON"
3990 OUTPUT @Agilent35670a;"TRAC D1, TRAC1"
4000 OUTPUT @Agilent35670a;"CALC:MATH:STATE OFF"
4010 SUBEND
4020 !
4030 SUB Sel_const
4040 !——————————————————————
4050 ! Allows a constant to be loaded into D1
4060 ! Called by: Loadx
4070 !——————————————————————
4080 COM @Agilent35670a
4090 ON KEY 0 LABEL “K1",4 GOTO K1
4100 ON KEY 1 LABEL “K2",4 GOTO K2
4110 ON KEY 2 LABEL “K3",4 GOTO K3
4120 ON KEY 3 LABEL “K4",4 GOTO K4
4130 ON KEY 4 LABEL “K5",4 GOTO K5
4140 ON KEY 5 LABEL “”,4 GOTO Waiting
4150 ON KEY 6 LABEL “ENTER CONSTANT”,4 GOTO Enter_const
4160 ON KEY 7 LABEL “”,4 GOTO Waiting
4170 ON KEY 8 LABEL “”,4 GOTO Waiting
4180 Waiting:GOTO Waiting

Example Programs
RPNCALC

11-18

4190 !
4200 K1:!
4210 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (K1)"
4220 GOTO Calc
4230 !
4240 K2:!
4250 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (K2)"
4260 GOTO Calc
4270 !
4280 K3:!
4290 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (K3)"
4300 GOTO Calc
4310 !
4320 K4:!
4330 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (K4)"
4340 GOTO Calc
4350 !
4360 K5:!
4370 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (K5)"
4380 GOTO Calc
4390 !
4400 Enter_const:! enter constant value into K1
4410 INPUT “Enter constant value”,C$
4420 OUTPUT @Agilent35670a;"CALC:MATH:CONS1 “&C$
4430 OUTPUT @Agilent35670a;"CALC:MATH:EXPR1 (K1)"
4440 !
4450 Calc:!
4460 OUTPUT @Agilent35670a;"CALC:MATH:STATE ON"
4470 ! constant stored in trace1; now copy to D1
4480 OUTPUT @Agilent35670a;"TRAC D1, TRAC1"
4490 OUTPUT @Agilent35670a;"CALC:MATH:STATE OFF"
4500 SUBEND

Example Programs
RPNCALC

11-19

TWO_CTLR

10 ! BASIC program: TWO_CTLR - Two controller operation
20 !——————————————————————————————-
30 !This program demonstrates how an external controller
40 !and Instrument Basic can work together. This program
50 !will download a BASIC program to the Agilent 35670A and run it two
60 !times. After each run, two BASIC program variables will
70 !will be read from the Agilent 35670A and displayed.
80 !——————————————————————————————-
90 !
100 Scode=7 !Select code for interface
110 Address=11 !Address for Agilent 35670A
120 Agilent35670a=Scode*100+Address
130 !
140 CLEAR Agilent35670a
150 OUTPUT Agilent35670a;"PROG:DEL:ALL" !Scratch the program space
160 !
170 DISP “Downloading the program...”
180 ASSIGN @Prog TO Agilent35670a;EOL CHR$(10) !Change EOL character
190 OUTPUT @Prog;"PROG:DEF #0"; !Send program
200 OUTPUT @Prog;"10 COM INTEGER Times_run,Test$[10]"
210 OUTPUT @Prog;"20 Times_run=Times_run +1"
220 OUTPUT @Prog;"30 IF Times_run=1 THEN Test$=""PASS"""
230 OUTPUT @Prog;"40 IF Times_run=2 THEN Test$=""FAIL"""
240 OUTPUT @Prog;"50 BEEP"
250 OUTPUT @Prog;"60 END"
260 OUTPUT @Prog;CHR$(10) END !Terminate the data block
270 !
280 !Set up registers for interrupt on PROGRAM_RUNNING going false
290 OUTPUT Agilent35670a;"*CLS" !Clear the STATUS register
300 !Program NTR reg and OPERATION ENABLE reg for PROGRAM_RUNNING bit
310 OUTPUT Agilent35670a;"STAT:OPER:NTR 16384"
320 OUTPUT Agilent35670a;"STAT:OPER:ENAB 16384"
330 OUTPUT Agilent35670a;"*SRE 128" !Allow SRQ on bit 7 of STATUS reg
340 !
350 DISP “Running the program...”
360 OUTPUT Agilent35670a;"PROG:STAT RUN" !Run Program
370 Display_res(Agilent35670a,Scode) !Read and display variables
380 OUTPUT Agilent35670a;"PROG:STAT RUN" !Run Program again
390 Display_res(Agilent35670a,Scode) !Read and display variables
400 !
410 END !End of this program
420 !
430 SUB Display_res(Agilent35670a,Scode)
440 ! This subprogram waits for an SRQ interrupt to signal that a
450 ! BASIC program has finished. It then clears the GPIB registers
460 ! by reading them. Once that is done, the values of two IBASIC
470 ! variables are read and displayed.
480 !
490 ON INTR Scode GOTO Read_results !Set up interrupt branching
500 ENABLE INTR Scode;2 !Allow interrupt on SRQ

Example Programs
TWO_CTLR

11-20

510 Idle:GOTO Idle
520 !
530 Read_results: !Program has finished
540 A=SPOLL(Agilent35670a) !Read and clear the SRQ
550 OUTPUT Agilent35670a;"STAT:OPER?" !Read and clear OPERATION STATUS reg.
560 ENTER Agilent35670a;Event
570 WAIT .5
580 !
590 OUTPUT Agilent35670a;"FORM:DATA ASCII,3"
600 OUTPUT Agilent35670a;"PROG:NUMB? ‘Times_run’"!Read the first variable
610 ENTER Agilent35670a;Times_run
620 !
630 OUTPUT Agilent35670a;"PROG:STR? ‘Test$’" !Read the second variable
640 ENTER Agilent35670a;Test$
650 !
660 PRINT “Times_run: ”;Times_run,"Test$: “;Test$
670 SUBEND

Example Programs
TWO_CTLR

11-21

WAI_SYNC

10 ! Instrument Basic program: WAI_SYNC - Measurement synchronization
20 ! ——————————————————————————————————
30 ! This program demonstrates how to use the *WAI command to
40 ! prevent execution of an GPIB command until all previous
50 ! commands have finished. In this example, the trace display
60 ! measurement has finished.
70 ! The *WAI command does not affect program operation. The
80 ! program will run to completion, sending all of the commands to
90 ! to the Agilent35670A without waiting for them to be executed.
100 ! ——————————————————————————————————-
110 Scode=8 !Interface select code
120 Address=0
130 Agilent35670a=Scode*100+Address
140 !
150 DISP “Sending GPIB commands...”
160 OUTPUT Agilent35670a;"SYST:PRES"
170 OUTPUT Agilent35670a;"AVER:COUN 1"
180 OUTPUT Agilent35670a;"AVER ON"
190 OUTPUT Agilent35670a;"FREQ:SPAN 50 HZ"!Set narrow span
200 OUTPUT Agilent35670a;"ABORT; INIT" !Start the measurement
210 OUTPUT Agilent35670a;"*WAI" !Tell analyzer to wait here until
220 !all GPIB commands have finished
230 OUTPUT Agilent35670a;"DISP:FORM ULOW" !Go to upper/lower after waiting
240 BEEP
250 DISP “Finished. Display will go to UPPER/LOWER when meas. Done”
260 END

Example Programs
WAI_SYNC

11-22

12

Instrument-Specific Instrument Basic Features

12

Instrument-Specific Instrument Basic Features

Introduction

The Instrument Basic Users Handbook that accompanies this manual is divided into the following

sections:

“Instrument Basic Programming Techniques”

“Instrument Basic Interfacing Techniques”

“Instrument Basic Language Reference”

The Instrument Basic Users Handbook is included with all Agilent Technologies instruments that use

Instrument Basic. Since each instrument is different, the way that Instrument Basic interfaces and

interacts with its host often changes from one instrument to another.

For example, some instruments employ editors, while others do not, and front panel interfaces often vary

a great deal from one instrument to another. For this reason, many parts of the Instrument Basic Users

Handbook are either generic in nature, or apply to only one of many possible instrument interfaces.

This chapter describes how to use the Instrument Basic Users Handbook for the Agilent 35670A. Global

exceptions apply throughout the handbook. These differences are discussed by category. Specific

differences for each command are listed in table 12-4.

12-1

Supported Interfaces

The Instrument BASIC Users Handbook refers to various interfaces, particularly in chapter 2 of

“ Instrument BASIC Interfacing Techniques.” Instrument BASIC in the Agilent 35670A supports the

following interfaces and the select codes that provide access to them:

the analyzer’s display (select code 1)

the keyboard (select code 2)

the external bus (select code 7)

the internal bus (select code 8)

the RS-232-C port (select code 9)

the parallel port (select code 26)

Instrument BASIC in the Agilent 35670A does not support the GPIO interface (select code 12).

Instrument-Specific Instrument Basic Features
Supported Interfaces

12-2

Display and Keyboard Interfaces

The following section describes the differences between the standard interface assumed by the Instrument

Basic Users Handbook and the Agilent 35670A’s display and keyboard interface. In addition, the Agilent

35670A’s keys that emulate command line execution of Instrument Basic keywords are listed.

Display Differences

Most references to the display (CRT) in the Instrument Basic Users Handbook assume a standard 80

column terminal. The Agilent 35670A has a 58 column display for text. This affects references to the

width of the default PRINTER IS device (the display) in the LIST, PRINT and PRINTER IS commands.

You must allocate a display partition to view output to the display because the instrument shares the

display with Instrument BASIC. This affects both the text commands listed above, as well as the

graphics commands, MOVE and DRAW. Three different display partitions, UPPER, LOWER or FULL,

may be allocated. The text width for all three is the same. The only change for the text commands is how

much text is displayed at one time.

In the Agilent 35670A, PEN 0 does not perform a pixel complement function. Instead, it causes

subsequent graphics statements to erase those portions of graphic elements that lie along the drawing

path.

Keyboard Differences

The Instrument Basic Users Handbook assumes the use of a standard BASIC Series 200 workstation

keyboard. It also assumes that Instrument Basic works in “command line execution mode,” where

individual commands may be entered and executed from the keyboard.

Instrument Basic in the Agilent 35670A works with an Agilent approved PC keyboard and does not use

command line execution mode. When using the Instrument Basic editor, the Agilent 35670A’s

front-panel hardkeys become alpha keys. Softkey menus emulate many of the keywords that are

executable from the command line on an BASIC workstation (such as RUN, CONTINUE, and

SCRATCH).

Instrument-Specific Instrument Basic Features
Display and Keyboard Interfaces

12-3

The following keypath of Agilent 35670A hardkeys and softkeys correspond to Instrument BASIC

keywords:

CONTINUE
[BASIC] [CONTINUE]

[BASIC] [INSTRUMNT BASIC] [DEBUG] [CONTINUE]

DEL
[BASIC] [INSTRUMNT BASIC] [EDIT] [DELETE LINE]

EDIT
[BASIC] [INSTRUMNT BASIC] [EDIT]

LIST
[BASIC] [INSTRUMNT BASIC] [PRINT PROGRAM]

PAUSE
[BASIC]

RUN
[BASIC] [RUN PROGRAM1] . . . [RUN PROGRAM5]

[BASIC] [INSTRUMNT BASIC] [RUN PROGRAM]

[BASIC] [INSTRUMNT BASIC] [DEBUG] [RUN]

SCRATCH
[BASIC] [INSTRUMNT BASIC] [UTILITIES] [SCRATCH]

SECURE
[BASIC] [INSTRUMNT BASIC] [UTILITIES] [SECURE]

STOP
[Local/GPIB]

REN
[BASIC] [INSTRUMNT BASIC] [UTILITIES] [RENUMBER]

Instrument-Specific Instrument Basic Features
Display and Keyboard Interfaces

12-4

The following Instrument Basic keywords are described in the “Language Reference” section of the

Instrument Basic Users Handbook in terms of a standard workstation keyboard. Their use with the

Agilent 35670A is described below:

EDIT
Ignore all documentation in the “Instrument Basic Language Reference” for the EDIT command. See chapter

5, “Developing Programs,” for information on using the Instrument Basic editor in the Agilent 35670A.

ON KEY and OFF KEY
Nine softkeys are available for use in the Agilent 35670A. They appear on the right side of the display where

instrument softkeys normally appear. Key selector values range from 0 through 8. In addition, the softkeys

are loaded into the function keys ([F1] - [F9]) with the keyboard.

INPUT
When an INPUT statement is encountered in an Instrument Basic program, the alpha entry menu appears on

the display. You can use your keyboard, or the front panel alpha keys, the numeric keypad and the symbol

softkeys to enter a response.

To enter an input response press the [ENTER] softkey in the alpha entry menu or the [Enter] key on the

keyboard. Disregard all keys mentioned in the “Instrument Basic Language Reference” description of this

key.

You have two options for terminating an INPUT command:

Press [ENTER] (either the softkey or the [Enter] key on the keyboard)

Press the [PAUSE] softkey ([F9] on the keyboard).

To continue the program after pressing the [PAUSE] softkey, press the [CONTINUE] softkey in the [BASIC] menu

or the [SINGLE STEP] softkey in the [DEBUG] menu. The INPUT statement is re-executed.

You cannot press the [BASIC] hardkey to pause the program nor the [Local/GPIB] hardkey to stop the program

because these are redefined as alpha keys whenever the alpha entry menu appears.

To enter an input response while a program is under remote control—that is, an external controller is

executing the program—the program must be returned to local (front panel) control. Press the [Local/GPIB]

hardkey to return the program to local control. Enter the input response as described above. The instrument

remains in local control after terminating the input command. Pressing the [Local/GPIB] hardkey again, resets

the program. It is recommended that you specify the exact key sequence expected in your input prompt.

ENTER
For a description of using ENTER with a keyboard (ENTER KBD) see the previous description for the

INPUT statement.

Instrument-Specific Instrument Basic Features
Display and Keyboard Interfaces

12-5

Disk I/O

The following section specifies the Agilent 35670A’s implementation of disk I/O functions.

Disk I/O Commands

Many Instrument Basic commands that pertain to the disk I/O (SAVE, RE-SAVE, COPY, MSI, etc.) have

similar functions executed by normal Agilent 35670A front-panel operations. These front-panel

operations are not considered to be Instrument Basic functions.

For example, the MASS STORAGE IS command when executed in a program is totally independent

of the current storage device found under the [Save/Recall] [DEFAULT DISK] key. Conversely, using the

[DEFAULT DISK] key to change the default storage device has no impact on any MSI statements within

an Instrument Basic program.

Volume Specifiers

Instrument Basic in the Agilent 35670A supports four mass storage devices; the internal disk drive,

volatile RAM disk (memory unit 0) and non-volatile RAM disk (memory unit 1) and an external disk

drive (Agilent Technologies Subset/80). This affects the volume specifier parameter in the following

commands:

ASSIGN

CAT

COPY

CREATE

CREATE ASCII

CREATE BDAT

CREATE DIR

GET

INITIALIZE

MASS STORAGE IS

PRINTER IS

PURGE

RENAME

RE-SAVE

SAVE

Instrument-Specific Instrument Basic Features
Disk I/O

12-6

Valid volume specifiers for each mass storage device are shown in table 12-1.

Table 12-1. Mass Storage Volume Specifiers

Disk
Instrument Basic

Volume Specifier

Equivalent GPIB

MSI Specifier

External Disk

(connected via GPIB)

:EXTERNAL,7xx,uu EXT,7xx,uu:

Front-Panel Disk

(3.5 inch floppy)

:INTERNAL,4 INT:

Volatile RAM Disk :MEMORY,0,0 RAM:

Nonvolatile RAM Disk :MEMORY,0,1 NVRAM:
xx GPIB address
uu unit number

Disk Format

Instrument Basic in the Agilent 35670A recognizes two types of disk and file formats; LIF (Logical

Interface Format) and DOS (Disk Operating System). Although the Agilent 35670A recognizes DOS

format and directories, it does not support HFS (Hierarchical File System). The Instrument Basic Users

Handbook addresses LIF, DOS, and HFS file systems. In general, disregard all references to HFS

throughout the Instrument Basic Users Handbook.

Instrument-Specific Instrument Basic Features
Disk I/O

12-7

File Types

Instrument Basic can create three types of files: ASCII, BDAT, and untyped. These files can exist on

either a DOS or a LIF formatted disk.

If you catalog a DOS disk, these three types show up as “ASCII,” “BDAT,” and “DOS.” If you catalog a

LIF disk, these three types show up as “ASCII,” “BDAT,” and “HP-UX.” Table 12-2 indicates these

configurations.

Table 12-2. Instrument Basic File Types

File Type Appears on a LIF disk as Appears on a DOS disk as

ASCII ASCII ASCII

BDAT BDAT BDAT

untyped HP-UX DOS

Instrument Basic supports LIF protect codes only on BDAT files. An error is generated if a LIF protect

code is encountered on an ASCII file. Instrument Basic ignores a LIF protect code on an untyped file.

A special note about file types and file systems:

The “Instrument Basic Language Reference” sometimes uses the terms HP-UX file and HFS

interchangeably or refers to HP-UX files only in context of HFS volumes. In fact, HP-UX files can

exist on a LIF volume, which the Agilent 35670A supports. Be careful when reading the descriptions

in the “Instrument Basic Language Reference.” The Agilent 35670A supports HP-UX files on LIF

volumes only. The Agilent 35670A does not support HP-UX files on HFS volumes.

The ASCII file type described in this section is specific to Agilent’s LIF file system and is not the

same as the standard “ASCII” file type in a DOS environment. If you copy an ASCII file from a LIF

disk to a DOS disk, the file appears as an “ASCII” file. However, the file is not usable with

DOS-system editors. Untyped files are the only files you can edit with a DOS ASCII editor on a PC.

An untyped file is automatically generated whenever an Instrument Basic program is SAVEd from

the Agilent 35670A to a DOS-formatted disk. A RE-SAVE maintains the original file type if a file

exists, otherwise it performs the same action as SAVE.

Instrument-Specific Instrument Basic Features
Disk I/O

12-8

Formatting Disks

Formatting a disk prepares it for use. The Agilent 35670A recognizes both LIF and DOS formats and has

the capability to format either type in the [FORMAT DISK] menu.

You can also use the INITIALIZE statement to format a disk.

Caution Existing files on the media are destroyed when formatting or executing the INITIALIZE

command.

The [FORMAT DISK] Menu

The [FORMAT DISK] menu under the [Disk Utility] hardkey allows you to define format parameters and

to format a disk using these parameters.

The [DISK TYPE LIF DOS] softkey allows you to select the type of format. The default type is DOS.

Press this key to toggle the selection to LIF.

The [RAM DISK SIZE] softkey specifies the storage capacity of the Volatile RAM disk. The default value

is 64 KBytes of storage. Use the numeric keypad or the arrow keys to enter a new value. Values are

rounded up to the next highest KByte (1024 byte) increment. The entry window appears at the top of the

display when you press the softkey.

Note You can use the [FORMAT DISK] menu to format non-volatile RAM (NVRAM), the

internal disk drive or the external disk drive. However, the [RAM DISK SIZE]

specification is ignored.

The [INTRLEAVE FACTOR] softkey defines the ordering of the sectors on the 3.5 inch flexible disks. To

specify the default value for the disk, specify 0. This value is ignored when formatting the non-volatile

RAM (NVRAM).

Press [PERFORM FORMAT] to start the format process. An entry window at the top of the screen displays

the specifier for the default disk. See table 12-1 for the MSI specifiers. Use the alpha entry keys or the

keyboard to modify the field. The current values for [DISK TYPE], [RAM DISK SIZE] and [INTRLEAVE
FACTOR] are used.

Instrument-Specific Instrument Basic Features
Disk I/O

12-9

The INITIALIZE Statement

The disk format, LIF or DOS, is specified when the media is initialized. The INITIALIZE statement

takes the following form:

INITIALIZE “<disk format>: <volume specifier>” <interleave factor>,
<format option>

If <disk format> is not specified, the default format is LIF.

The <volume specifier> for the volatile RAM disk includes a <unit size> parameter,that specifies the

number of 256-byte sectors. The actual size is memory dependent and ranges from 4 thru 32767.

The <format option> parameter specifies the capacity of the flexible disk drive (internal or external). See

table 12-3 for the valid format options.

Table 12-3. Flexible Disk Format Options

Media Format Option Bytes/Sector Sectors/Track Tracks/Surface
Maximum Capacity

(bytes)

1-MByte 0 256 16 77 630,784

1* 256 16 77 630,784

2 512 9 77 709,632

3 1,024 5 77 788,480

4** 256 16 77 270,336

16 512 9 80 737,280

2-MByte 0 256 32 77 1,261,568

1*** 256 32 77 1,261,568

2 512 18 77 1,419,264

3 1,024 10 77 1,576,960

4*** 256 32 77 1,261,568

16 512 18 80 1,474,560
* *Same as Format Option 0 (default) when using 1-MByte media.
** **Format Option 4 (singled sided disk format) is not supported in internal disk drive (INT:).
*** ***Same as Format Option 0 (default) when using 2-MByte media.

Note Table 12-3 specifies the maximum capacity for each format option. Actual capacity is

dependent upon the file system type, LIF or DOS.

For example, to INITIALIZE a flexible disk in the internal disk drive in LIF format, use the following:

INITIALIZE “LIF:,4,0",1

Instrument-Specific Instrument Basic Features
Disk I/O

12-10

To INITIALIZE a DOS disk in an external disk drive, use the following:

INITIALIZE “DOS:,700,0",1,16

In this example, the format option, 16, is important when initializing a DOS disk. An incorrect format

option results in a disk that the Agilent 35670A can use, but other DOS systems cannot use. This

potential problem can be avoided by formatting the disk on a DOS system, rather than the Agilent

35670A.

Caution An incorrect format option may prevent other DOS systems from using the DOS disk.

You can use the INITIALIZE statement to format the non-volatile disk (NVRAM). However, the size of

NVRAM is fixed and the interleave factor is ignored. You can only change the file format.

Once initialization is complete, file format, “LIF” or “DOS”, is not specified in any other file operations.

Instrument Basic automatically determines the format of the disk.

Instrument-Specific Instrument Basic Features
Disk I/O

12-11

Miscellaneous Command Differences

COS
The range of the COS command is all absolute values less than 1.7083127722 e+10 degrees.

SYSTEM$
The Agilent 35670A does not support the topic specifier, (SYSTEM VERSION:).

Note Since the Instrument Basic Users Handbook is continually revised to support all

implementations of Instrument Basic, there may be other commands that appear in that

documentation that are not supported in the Agilent 35670A. Table 12-4 in the

following section lists all Instrument Basic keywords supported by Instrument Basic in

the Agilent 35670A.

Instrument-Specific Instrument Basic Features
Miscellaneous Command Differences

12-12

Keyword Exceptions

Table 12-4 summarizes the Instrument Basic keyword implementation in the Agilent 35670A. The table

indicates if the keyword has front panel support. (If it does, the key path is given.) Table 12-4 also lists

the major differences between the descriptions of these keywords in the “Instrument Basic Language

Reference” and the way they are implemented in the Agilent 35670A. Where differences are too

extensive to be summarized, references to their explanation in the “Global Exceptions” section are given.

Any keywords or functions found in the “Instrument Basic Language Reference” that do not appear in

this table, do not apply to Instrument Basic in the Agilent 35670A and should be ignored.

Table 12-4. Agilent 35670A Keyword Implementation

Command Front Panel Support Exceptions

ABORT None Interface Select Code = 7 or 8

ABS None None

ACS None None

ALLOCATE None None

ALPHA ON | OFF [BASIC] [DISPLAY SETUP]
[ALPHA ON OFF]

None

AND None None

AREA None Not supported

ASN None None

ASSIGN None One GPIB device per ASSIGN statement
LIF protect code supported in BDAT files only
Does not support HFS volumes
See “Disk I/O”

ATN None None

AXES None None

BASE None None

BEEP None None

BINAND None None

BINCMP None None

BINEOR None None

BINIOR None None

BIT None None

CALL None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-13

Command Front Panel Support Exceptions

CAT None (Independent of [Disk Utility]
and [Save/Recall] functions)

Does not support HFS catalogs
See “Volume Specifiers” in “Disk I/O

CAUSE ERROR None None

CHR$ None None

CLEAR None None

CLEAR ERROR None None

CLEAR SCREEN None None

CLIP None None

COM None None

CONT [BASIC] [CONTINUE] or [BASIC]
[DEBUG] [CONTINUE]

No line number or label support

CONTROL None Not supported

COPY None (Independent of[Disk Utility]
functions)

LIF protect code in BDAT files only
Does not support HFS volumes
See “Volume Specifiers” in “Disk I/O

COPYLINES None Not supported

COS None Absolute range values less than
1.7083127722 e+10

CREATE None Does not support HFS volumesSee “Disk I/O”

CREATE ASCII None Does not support HFS volumes See “Disk I/O”

CREATE BDAT None LIF protect code allowed
Does not support HFS volumes
See “Disk I/O”

CREATE DIR None Does not support HFS volumesSee “Volume
Specifiers” in “Disk I/O

CRT None ENTER CRT (ENTER 1) not supported

CSIZE None None

DATA None None

DATE None None

DATE$ None None

DEALLOCATE None None

DEF FN None None

DEG None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-14

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

DEL [BASIC] [EDIT][DELETE LINE] Deletes only the current line

DELSUB [BASIC] [INSTRUMENT BASIC]
[UTILITIES] [DELSUB]

None

DET None None

DIM None None

DISABLE None None

DISABLE INTR None Interface Select Code = 7 or 8

DISP None None

DIV None None

DOT None None

DRAW None Maximum x,y coordinates:
Full partition (474,345)
Upper partition (474,171)
Lower partition (474,171)

DROUND None None

DUMP None Not supported

DVAL None None

DVAL$ None None

EDIT [BASIC][EDIT] Editing functions described in chapter 5.

ENABLE None None

ENABLE INTR None Interface Select Code = 7 or 8 Must not
precede an ON INTR statement.

END None None

END IF None None

END LOOP None None

END SELECT None None

END WHILE None None

ENTER None Select Code = 2, 7, 8, 9, or 26 only

ERRL None None

ERRLN None None

ERRM$ None None

ERRN None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-15

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

EXIT IF None None

EXOR None None

EXP None None

FN None None

FNEND None None

FOR...NEXT None None

FRACT None None

FRAME None None

GCLEAR None None

GESCAPE None None

GET None (Independent of [Save/Recall]
functions)

Does not support HFS volumesSee “Volume
Specifiers” in “Disk I/O

GINIT None None

GLOAD None None

GOSUB None None

GOTO None None

GRAPHICS ON | OFF [BASIC] [DISPLAY SETUP]
[GRAPHICS ON OFF]

None

GRID None None

GSTORE None None

IDRAW None None

IF...THEN None None

IMAGE None None

IMOVE None None

INDENT None None

INITIALIZE None (Independent of [Disk Utility]
functions)

Does not support HFS volumesSee “Disk I/O”

INPUT None See INPUT command in “Keyboard
Differences” section

INT None None

INTEGER None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-16

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

IPLOT None None

IVAL None None

IVAL$ None None

KBD None External Keyboard (2) or front-panel alpha
keys

LABEL None None

LDIR None None

LEN None None

LET None None

LGT None None

LINE TYPE None Line types are different from those listed in
the Language Reference

LIST [BASIC][PRINT PROGRAM] Default width = 58 (see PRINTER IS)

LOAD None None

LOADSUB None None

LOCAL None None

LOCAL LOCKOUT None Interface Select Code = 7 only

LOG None None

LOOP None None

LORG None None

LWC$ None None

MASS STORAGE IS None (Independent of [Save/Recall]
and Disk Utility] functions)

Does not support HFS volumesSee “Disk
I/O”External disks must be online

MAT None None

MAX None None

MAXREAL None None

MERGE ALPHA WITH
GRAPHICS

None Not supported

MIN None None

MINREAL None None

MOD None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-17

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

MODULO None None

MOVE None Maximum x, y coordinates:
Full partition (474,345)
Upper partition (474,171)
Lower partition (474,171)

MOVELINES None Not supported

NOT None None

NUM None None

OFF CYCLE None None

OFF ERROR None None

OFF INTR None Interface Select Code = 7 or 8 Must precede
ENABLE INTR statement.

OFF KEY None Key selectors are 0 thru 9

OFF TIMEOUT None Interface Select Code = 7, 8 or 9

ON None None

ON CYCLE None None

ON ERROR None None

ON INTR None Interface Select Code = 7 or 8

ON KEY None Key selectors are 0 thru 9

ON TIMEOUT None Interface Select Code = 7, 8 or 9

OPTION BASE None None

OR None None

OUTPUT None Select Code = 1, 7, 8, 9, or 26 only

PASS CONTROL None Interface Select Code 8 (pass control of
external bus to analyzer)

PAUSE None None

PDIR None None

PEN None 0 = erase nonzero = draw

PENUP None None

PI None None

PIVOT None None

PLOT None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-18

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

PLOTTER IS None Not supported

POLYGON None Solid fill only

POLYLINE None None

POS None None

PRINT None PRINTER IS default width = 58

PRINTER IS None default width = 58
LIF protect code in BDAT files only
Does not support HFS volumes
See “Volume Specifiers” in “Disk I/O”

PROUND None None

PRT None None

PURGE None (Independent of [Disk Utility]
functions)

LIF protect code in BDAT files only
Does not support HFS volumes
See “Volume Specifiers” in “Disk I/O”

RAD None None

RANDOMIZE None None

RANK None None

RATIO None None

READ None None

REAL None None

RECTANGLE None Solid fill only

REDIM None None

REM None None

REMOTE None Does not support Interface Select Code 8, 9,
or 26

REN [BASIC] [UTILITIES] [RENUMBER] No line label support

RENAME None (Independent of[Disk Utility]
functions)

LIF protect code in BDAT files only
Does not support HFS volumes
See “Volume Specifiers” in “Disk I/O”

REPEAT...UNTIL None None

RE-SAVE None (Independent of [Save/Recall]
functions)

Does not support HFS volumes
See “Disk I/O”

RESTORE None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-19

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

RE-STORE None None

RETURN None None

RETURN . . . None None

REV$ None None

RND None None

ROTATE None None

RPLOT None None

RPT$ None None

RUN [BASIC] [RUN] or [BASIC] [DEBUG]
[RUN]

None

SAVE None (Independent of [Save/Recall]
functions)

Does not support HFS volumes
See “Disk I/O”

SCRATCH [BASIC] [UTILITIES] [SCRATCH] Does not support HFS volumes

SECURE [BASIC] [UTILITIES] [SECURE] None

SELECT...CASE None None

SEPARATE ALPHA None Not supported

SET PEN None Not supported

SET TIME None None

SET TIMEDATE None None

SGN None None

SHIFT None None

SHOW None None

SIN None None

SIZE None None

SPOLL None None

SQR None None

SQRT None None

STATUS None Not Supported

STOP None None

STORE None None

SUB None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-20

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Command Front Panel Support Exceptions

SUM None None

SYSTEM PRIORITY None None

SYSTEM$ None Does not support “VERSION:”

TAB None None

TABXY None None

TAN None None

TIME None None

TIME$ None None

TIMEDATE None None

TRIGGER None None

TRIM$ None None

UPC$ None None

VAL None None

VAL$ None None

VIEWPORT None None

WAIT None None

WHERE None None

WHILE None None

WILDCARDS None Does not support UX

WINDOW None None

Instrument-Specific Instrument Basic Features
Keyword Exceptions

12-21

Table 12-4. Agilent 35670A Keyword Implementation (Continued)

Index

Index

A

aborting I/O operations 2-6, 8-11
active controller

defined 8-3
Instrument Basic as 8-18

active program 2-11
address

extended 8-2
primary 8-2
secondary 8-2

allocating display partitions 5-24
See also display partitions

alpha keys on the front panel 5-12
appending programs 4-9
arbitrary block data 8-27, 8-29
arrays 6-4
ASSIGN statement 2-4
* in program line 5-21
ATN signal line 8-4
AUTO_BAS program 4-11
autoloading a program 4-11

B

Back Space hardkey 5-10
baud rate 9-5
breakpoints, setting 6-5
bus

See GPIB

See also RS-232-C

C

chaining programs 4-9
clearing

input buffer 2-2
input buffer (RS-232-C) 9-8
memory 5-19
screen 5-25

configuring the RS-232-C port 9-5 - 9-6
continuing a program 3-2, 6-7
control codes 7-4
controller

active 8-3
changing status 2-6
See also external controller

See also GPIB

non-active 8-14
system 8-3

conventions 1-4
copying lines 5-10

D

de-allocating display partitions 5-24
See also display partitions

DEBUG menu

CONTINUE softkey 3-4, 6-6 - 6-7
EXAMINE VARIABLE softkey 6-4
LAST ERROR softkey 6-7
RESET softkey 6-7
RUN softkey 3-2, 6-7
SINGLE STEP softkey 6-6

debugging programs 6-2
deleting

characters 5-15 - 5-16
functions 5-22
lines 5-16
subprograms 5-22

device selectors

description 8-2
in a recorded program 2-4

Device State Register set 9-10
directories 4-3
disabling autoload programs 4-11
disk

catalog 4-7
default 4-5
format 4-2 - 4-4, 12-7
I/O functions 12-6 - 12-11

display partitions

allocating 7-1
commands that use 7-1
de-allocating 7-2
enabling graphics 5-25
enabling text 5-25
size of 7-3
writing graphics to 7-5
writing text to 7-3

DISPLAY SETUP menu, use during program

development 5-25, 7-1
downloading programs 8-27

See also example programs

DSR/DTR 9-6

i

E

echoing GPIB commands 2-10
EDIT menu

DELETE CHARACTER softkey 5-16
DELETE LINE softkey 5-16
END EDIT softkey 5-6
ENTER softkey 5-8 - 5-9
GOTO LINE softkey 5-9
INSERT LINE softkey 5-11
INSERT SPACE softkey 5-10
RECALL LINE softkey 5-11, 5-16
UPPERCASE lowercase softkey 5-12

editing

EDIT command 12-5
with the EDIT softkeys 5-8
with the keyboard 5-4

ENABLE RECORDING softkey 2-1
ENTER softkey 5-9
ENTER statement 8-3, 8-5, 9-8, 12-5

See also example programs

entering lines 5-10
error messages

out of memory 5-18
viewing 4-8

examining variables

arrays 6-4
by name 6-4
strings 6-4

example programs

appending files 4-9
arbitrary source 11-2 - 11-6
displaying graphics and text 7-6
downloading a program 11-20 - 11-21
downloading data 8-28
SRQ interrupt 11-9
synchronization 11-10, 11-22
transferring active control 8-23
uploading data 8-29
use of *OPC 11-9
use of *OPC? 11-10
use of *WAI command 11-22
use of data registers 11-2 - 11-6, 11-11 - 11-19
use of ENTER 11-10
use of external controller 11-20 - 11-21
use of status registers 11-7 - 11-8
waveform math functions 11-11 - 11-19

extended addressing 8-2
external controller

configuring the RS-232-C port 8-22
See also example programs

input under remote control 12-5
querying Instrument Basic variables 8-26

setting Instrument Basic variables 8-26
transferring data 8-23

F

file

appending 4-9
closing 3-4
systems 12-7
transferring 4-2 - 4-3
translating 4-2
types 4-2, 12-8

file names

DOS 4-3
LIF 4-4

format options 12-10
formatting disks 12-9

G

GET statement 4-1, 4-9
GPIB Echo 2-10
graphics

in partitions 7-5

H

Instrument Basic

applications 1-2
as active controller 8-18
as non-active controller 8-21
editor 5-3 - 5-16
GPIB model 8-15 - 8-21
online help 1-1
parallel interface 10-2
resetting 3-5
RS-232-C interface 9-2 - 9-4
using with external controllers 8-22 - 8-30
vs. Agilent BASIC 1-2

Instrument Basic Users Handbook

disk I/O exceptions 12-6 - 12-11
display exceptions 12-3
exceptions by keyword 12-13 - 12-21
I/O exceptions 12-2
keyboard differences 12-3
keyword exceptions 12-5, 12-12

GPIB

ABORT statement 8-11
active controller 8-3
ATN 8-4
buffer 2-2
bus 8-1
CLEAR statement 8-10
commands 2-4, 8-6

Index (Continued)

ii

controlling the bus 8-1
device selectors 8-2
DISP:PROG command 7-2
example bus sequences 8-5
See also example programs

extended commands 8-22
external port 8-15
general structure 8-3
internal port 8-15
interrupts 8-12
listener 8-4
LOCAL LOCKOUT statement 8-8
LOCAL statement 8-9
managing the bus 8-6 - 8-14
PASS CONTROL statement 8-14
primary address 8-2
REMOTE statement 8-7
SCPI commands 2-4
secondary address 8-2
select code 8-2
service routines 8-11
SPOLL statement 8-14
statement summary 8-6
status registers 8-17
system controller 8-3
talker 8-4
TRIGGER statement 8-10
unlisten 8-4

GPIB Interface

Instrument Basic to Agilent 35670A 2-4
Agilent-Instrument BASIC

See also RS-232-C

I

indenting programs 5-22
INITIALIZE

command 12-10
statement 12-9

input buffer 2-2
input buffer (RS-232-C) 9-8
INPUT statement 12-5
inserting

keywords 5-14
lines 5-11
measurement sequence 5-15
spaces 5-10
symbols 5-14

INSTRUMNT BASIC menu

CONTINUE softkey 3-4
DEBUG softkey 6-2
EDIT softkey 5-3
ENABLE RECORDING softkey 2-1
PRINT PROGRAM softkey 5-23

RUN softkey 3-2
UTILITIES softkey 5-17

interrupts

servicing SRQ 8-13

K

keyboard

deleting characters 5-15
installing 5-6
keys 5-4
using the editor 5-4

keystroke recording

See recording

keywords

Instrument Basic 12-13 - 12-21
inserting 5-14

knob, using 5-9

L

lines

copying 5-10
deleting 5-16
inserting 5-11
moving 5-10
renumbering 5-10, 5-20

loading a program 4-8

M

managing the bus

See GPIB

mass storage

devices 4-5
volume specifiers 12-6

memory 4-5
available 5-18
clearing 5-19
program buffer 2-11 - 2-12
sizing 5-18
stack size 4-8

moving lines 5-10 - 5-11

N

naming files

See file names

non-active controller

defined 8-14
Instrument Basic as 8-21

O

OFF KEY command 12-5
ON INTR statement 8-12
ON KEY command 12-5

Index (Continued)

iii

ON TIMEOUT statement 9-11
OUTPUT statement 2-3, 7-3, 8-3, 8-5, 9-7, 10-4

P

parallel port

access 10-2
output 10-4
pin designators 10-3
select code 10-2
transferring data 10-4

parity (RS-232-C) 9-6
passing control

to the controller 8-14
to the instrument 2-8, 8-19

PAUSE statement 3-3
pausing a program 3-4
PEN statement 7-5
pixel coordinates

See display partitions

Port 1

See RS-232-C

prerun operation 3-2
Preset hardkey 2-9
primary address 8-2
program

appending 4-9
AUTO_BAS 4-11
autoloading 4-11
buffers 2-11 - 2-12, 4-5
chaining 4-9
continuing 3-2, 6-7
indenting 5-22
listing 5-23
loading 4-8
pausing 3-4
printing 5-23
recalling 4-8
resetting 6-7
running 3-2
saving to disk 4-7
securing 5-21
selecting 2-11
stopping 3-5
transferring 4-1

R

RAM unit size 12-10
RE-SAVE

command 12-8
statement 4-1

RECALL PROGRAM softkey 4-8
recalling

lines 5-11

programs 4-8
recording

avoiding errors 2-9
default states 2-7
generated program statements 2-3 - 2-4
how it works 2-3, 2-5
how to 2-1
into an existing program 5-15
operations not recorded 2-6 - 2-8
save and recall operations 2-7

remote control

with GPIB commands 8-22
removing text 5-15
renumbering

lines 5-3, 5-10
programs 5-20

resetting a program 6-7
RS-232-C

access 9-2
baud rate 9-5
character format 9-3, 9-5
character length 9-5
clearing the buffer 9-8
configuring 9-5 - 9-6
detecting errors 9-9 - 9-10
Device State Register 9-10
DSR/DTR 9-6
See also example programs

flow control 9-6
handshaking 9-6
input 9-8
output 9-7
parity 9-6
pin designators 9-4
protocols 9-6
select code 9-2
timeouts 9-11
transferring data 9-7 - 9-11
XON/XOFF 9-6

running a program

at turn on 4-11
from BASIC menu 3-2
from DEBUG menu 6-7
from external controller 8-22
from INSTRUMNT BASIC menu 3-2

S

sample programs

See example programs

SAVE

command 12-8
statement 4-1

saving a program 4-7

Index (Continued)

iv

SCPI compliance 2-4
screen

clearing 5-25
See also display partitions

enabling graphics 5-25
enabling text 5-25

secondary address 8-2
securing programs 5-21
selecting

active programs 2-11
devices 2-4, 8-2

serial port

See RS-232-C

service requests, GPIB 8-11
sizing memory 5-18
softkey labels, changing 2-12
SRI, Service Request Indicators 8-16
SRQ interrupts

defined 8-12
See also example programs

generating 8-16
servicing 8-13

stack size 4-8, 5-18
* in program line 5-21
status registers

Device State 9-10
See also example programs

See also GPIB

overview 8-17
See also RS-232-C

stopping a program 3-5
storage devices 12-6
storing a program 4-7
string variables 6-4
symbols, entering 5-14
synchronizing

See also example programs

measurement events 2-8
program with instrument 7-2

system controller

defined 8-3
Instrument Basic as a 1-2

System Utility menu

MEMORY USAGE softkey 5-18

T

transferring

data 4-2, 8-23
data over RS-232-C 9-7 - 9-11
data via parallel port 10-4
data with a PC 4-3
data with an Agilent BASIC computer 4-4
See also example programs

programs 8-27
translating file types 4-2
TYPING UTILITIES menu

INSERT ~%’!?’_ softkey 5-14
INSERT KEYWORD softkey 5-14

U

uploading programs 8-27
UTILITIES menu

AUTO MEMORY softkey 5-18
DELSUB softkey 5-22
DELSUB TO END softkey 5-22
INDENT softkey 5-22
MEMORY SIZE softkey 5-18
RENUMBER softkey 5-20
SCRATCH softkey 5-19
SECURE softkey 5-21

X

XON/XOFF 9-6

Index (Continued)

v

Need Assistance?

If you need assistance, contact your nearest Agilent Technologies Sales and
Service Office listed in the Agilent Catalog. You can also find a list of local
service representatives on the Web at:
http://www.agilent.com/find/assist or contact your nearest regional office

listed below.

If you are contacting Agilent Technologies about a problem with your Agilent
35670 Dynamic Signal Analyzer, please provide the following information:

�Model number: Agilent 35670A

�Serial number:

�Options:

�Date the problem was first encountered:

�Circumstances in which the problem was encountered:

�Can you reproduce the problem?

�What effect does this problem have on you?

You may find the serial number and options from the front panel of your
analyzer by executing the following:

Press [System Utility], [more], [serial number].

Press [System Utility], [options setup].

If you do not have access to the Internet, one of these centers can direct you to
your nearest representative:

United States Test and Measurement Call Center
(800) 452-4844 (Toll free in US)

Canada (905) 206-4725

Europe (31 20) 547 9900

Japan Measurement Assistance Center
(81) 426 56 7832
(81) 426 56 7840 (FAX)

Latin America (305) 267 4245
(305) 267 4288 (FAX)

Australia/New Zealand 1 800 629 485 (Australia)
0800 738 378 (New Zealand)

Asia-Pacific (852) 2599 7777
(FAX) (852) 2506 9285

